

NewsEdge Java API

Guide

Version 1.0
Revision: October 2007

Copyright Moody’s Analytics, Inc. 2021

All Rights Reserved.

NewsEdge Java API Guide

Page 2 of 152

Table of Contents

CHAPTER 1: ABOUT THIS GUIDE.. 5

Getting Started .. 5

Prerequisites ... 6

DOCUMENT CONVENTIONS .. 6

CHAPTER 2: QUICK START... 7

BEFORE YOU BEGIN... 7

TASK 1: CONNECTING TO THE NEWS SERVER .. 8

Code Walk-Through.. 8

How to Use the Code .. 9

Example Application ... 9

TASK 2: SEARCHING HISTORICAL NEWS .. 9

Code Walk-Through.. 10

How to Use the Code .. 11

Example Application ... 12

TASK 3: OBTAINING AND FILTERING REAL-TIME NEWS .. 12

Code Walk-Through.. 14

How to Use the Code .. 14

Example Application ... 15

TASK 4: RETRIEVING THE FULL TEXT OF AN ARTICLE ... 15

Code Walk-Through.. 16

How to Use the Code .. 17

Example Application ... 17

CHAPTER 3: HOW TO ... 18

CONNECTING AND AUTHENTICATION .. 19

How to Connect to the Server ... 19

How to Connect Through a Proxy .. 21

How to Connect Through Port 80 or Port 443 ... 22

How to Change Your Connection Password .. 23

How to Monitor the Connection's Health ... 24
How to Configure Logging ... 25

How to Discover Your Entitlements.. 26

HISTORICAL NEWS ... 27

How to Search Historical Headlines .. 27

How to Change the Number of Search Results Returned ... 29

How to Limit Search Results by Date ... 30

How to Limit a Search by Wires ... 31

REAL-TIME NEWS .. 33

How to Start a Real-Time News Feed ... 33

NewsEdge Java API Guide

Page 3 of 152

How to Filter Real-Time Headlines .. 35

How to Examine your Profiles .. 35

How to Filter Articles by Wire ... 36

METADATA AND CONTENT .. 36

How to Obtain a Story's Subject Codes or Stock Ticker Symbols 37

How to Obtain the Provider of a Story ... 38

How to Obtain the Service of a Story.. 38

How to Obtain the Publication Date/Time of a Story... 39

How to Obtain the Short Identifier for a Story ... 40

How to Obtain the Headline Text of a Story... 41

How to List the Available Wires ... 41

How to Obtain the Content of a Story... 42

CHAPTER 4: API.. 45

GARI.INAP PACKAGE .. 46

InapClient Class.. 46

LoginData Class ... 48

GARI.MEDIA PACKAGE ... 50

MediaCommConstants Interface .. 50

MediaConnection Class .. 52

MediaData Class .. 57

MediaException Exception ... 59

GARI.MEDIA.IPTC PACKAGE ... 59

IPTCConstants Interface .. 60

IPTCProfile Class ... 61

IPTCParseException... 74

GARI.NET PACKAGE ... 75

QuipEventListener Interface ... 75

Channel Class ... 76

ProxyData Class ... 77

QuipBuffer Class... 79

QuipClient Class ... 79

QuipEvent Class.. 81

QuipException Class... 83

TimeoutException Class.. 84

GARI.NEWS PACKAGE... 85

Headline Class .. 85

HeadlineAnswer Class .. 89

HeadlineContext Class.. 90

HistoryCacheSearch Class ... 92

HistorySearch Class.. 95

MetaHeadlineQuery Class.. 99

MetaQuery Class .. 101

NewsEdge Java API Guide

Page 4 of 152

NewsChannel Class .. 102

Profile Class.. 103

ProfileGroup Class ... 107

ProfileGroupRequest Class .. 109

ProfileHeadlines Class ... 110

ProfileManager Class ... 111

QuantifiedHeadline Class ... 113

QuantifiedHeadlineAnswer Class ... 114

QuantifiedHeadlineRequest Class .. 115

ResourceID Class.. 116

StoryAnswer Class .. 119

StoryRequest Class.. 120

UserNewsInfo Class.. 122

UserNewsInfoRequest Class ... 124

WireInfo Class .. 124

WireList Class ... 126

ParsingException .. 127

GARI.UTIL PACKAGE ... 127

ExtendedEnumeration Interface ... 128

Base64 Class ... 128

detectProxy Class.. 129

LISTING: CONNECTING TO THE NEWS SERVER.. 131

LISTING: SEARCHING HISTORICAL NEWS .. 132

LISTING: OBTAINING AND FILTERING REAL TIME NEWS 134

LISTING: RETRIEVING THE FULL TEXT OF AN ARTICLE 136

NETWORK STACK .. 140

MESSAGING PATTERNS .. 141

Request/Response Operations... 141

Syndication Operations... 142

INDEX.. 146

NewsEdge Java API Guide

Page 5 of 152

Chapter 1: About This Guide

Moody’s Analytics builds and operates digital media

distribution platforms for publishing and financial services.

This document describes the NewsEdge Java API, which

allows you to search and download news stories and metadata

in various formats. You can find information about news

delivery formats such as NewsML, XMLNews, and NITF, in

separate documents for each format. This document includes

the following chapters:

"Quick Start,” page 7 (step-by-step tutorials for the most

common tasks to help you get started)

“How To ...," page 18 (code snippets and instructions for many

routine tasks)

"API," page 45 (documentation of all the classes, methods, and

constants relevant to client applications)

“Quick Start Listings,” page 131 (Java command-line samples

for tasks listed in the Quick Start chapter)

“Architectural Overview,” page 139 (architectural overview of

NewsEdge Java API)

"Glossary,” page 143

This guide is intended for experienced Java developers who

want to integrate NewsEdge news feeds into existing

applications or build new custom applications around the

news feeds. It is not necessary to read this document to be able

to work with Moody’s Analytics’ delivery formats, since each

has its own, self-contained manual.

Getting Started

"Quick Start," page 7 provides step-by step tutorials on the

four basic tasks required to obtain news from the

NewsEdge News Server:

Connecting to the server

NewsEdge Java API Guide

Page 6 of 152

Searching historical news

Filtering real-time news

Retrieving the full text of a story

Prerequisites

In order to use the NewsEdge Java API, you must have the

following:

Java 1.4 or greater SDK

Experience developing Java applications

Internet access

Connection information supplied by NewsEdge Customer

Support (username, password, and host)

Document Conventions

This document uses the following conventions:

Class, object and method names appear in boldface. When a

class, object or method appears as a separate entry (in other

words, not within the text of a paragraph), it is left-justified,

with exception information below it in a smaller font, and an

explanation of the item centered, as in the following example:

MediaConnection (java.net.InetAddress address, gari.net.ProxyData)

throws MediaException, java.io.IOException

The constructor opens a connection to the media server.

Code samples appear in a courier font, as follows:

MediaConnection connection = new MediaConnection(hostName);

connection.requestImage(key);

MediaData image = connection.readImageResponse();

NewsEdge Java API Guide

Page 7 of 152

Chapter 2: Quick Start

This chapter focuses on the four basic tasks required to obtain

news from the NewsEdge News Server:

Connect to and ping the News Server

Perform a full text search of historical articles

Set up a filter and read real-time articles

Retrieve the full text of an article

The code examples in this chapter are intentionally simple and

do not include error handling and other elements of robust

production code.

After completing this Quick Start, refer to the chapters “How

To ...” page 18 for other common tasks, and “API” page 45 for

a complete list of the API classes.

Before You Begin

Here’s what you need to work through the examples:

Java development environment (version 1.4 or higher)

A copy of the NewsEdge Java API (gari.jar, provided by

NewsEdge Customer Support) added to the Java load path

A copy of the Apache Foundation's Log4J logging library

(log4j.jar, available from http://logging.apache.org/) added to the

Java load path.

A copy of the Log4J property file (log4j.properties, provided by

NewsEdge Customer Support) in the Java source directory of

your application to configure logging out (see “How to

Configure Logging" page 25 for a sample listing); if this is not

present, warning messages appear, but your applications will

still run

A connection to the Internet (with information about any

proxies)

The hostname for your NewsEdge News Server (provided by

NewsEdge Customer Support)

http://logging.apache.org/)

NewsEdge Java API Guide

Page 8 of 152

A username and password for connecting to the NewsEdge

News Server (provided by NewsEdge Customer Support)

Experience writing, compiling, and running Java command-line

applications

Task 1: Connecting to the News Server

The following code sample is a short static method that you

can use to connect to a NewsEdge News Server, using the

username, hostname, and password supplied by NewsEdge

Customer Support. The method returns a

gari.inap.InapClient object (page 46):

private static InapClient

amcConnect(String username, String password, String hostname)

throws IOException, QuipException {

LoginData login = new LoginData(username, password,

"JAPI");

InetAddress address = InetAddress.getByName(hostname);

return new InapClient(address, Channel.STARTUP_SERVICE,

login);

}

Note that this method may not work if there is a proxy server

between your client and the NewsEdge News Server. For

more information on how to handle proxies, see “How to

Connect Through a Proxy,” page 21. If firewall rules prevent

you from using the default port, it is also possible to connect

to the News Server through port 80 (see “How to Connect

Through Port 80,” page 22).

Code Walk-Through

First, create a gari.inap.LoginData object (page 48) that

contains username, password, and a string identifying the API

version. Note that although you must include a value for the

API version, the actual content does not matter: you can

simply use “JAPI”, or a combination of “JAPI” and your

company name (for example, “JAPIAcmeFinance”).

LoginData login = new LoginData(username, password, "JAPI");

NewsEdge Java API Guide

Page 9 of 152

Next, look up the IP address of the News Server. If the code

cannot resolve the hostname, it throws a

java.lang.IOException.

InetAddress address = InetAddress.getByName(hostname);

Finally, use these two pieces of information to create a

gari.inap.InapClient object, which is the basic connection

object for a NewsEdge News Server. You must also import the

gari.net.Channel class (page 76) to get the

STARTUP_SERVICE constant. The code throws a

java.lang.IOException for a general networking problem, or a

gari.net.QuipException (page 83) for a NewsEdge-specific

problem (such as a bad password).

return new InapClient(address, Channel.STARTUP_SERVICE, login);

How to Use the Code

To test this method, create a connection and test that it is

active. Make sure that you replace USERNAME, PASSWORD,

and HOSTNAME with your actual connection information, as

supplied by NewsEdge Customer Support:

InapClient client = amcConnect(USERNAME, PASSWORD, HOSTNAME);

// Test if the connection is active

System.out.println("Connected to NewsEdge News Server.");

System.out.println(" Is Connected: " + client.isConnected());

Example Application

For a complete, short Java command-line application to

connect to and ping a NewsEdge News Server and display

an error message (on failure) or some information from the

server (on success), see “Listing: Connecting to the News

Server,” page 131.

Task 2: Searching Historical News

Now that you have connected to the NewsEdge News

Server, you may want to perform a full text search through

NewsEdge Java API Guide

Page 10 of 152

past articles stored on the server. Note that searching for

historical news requires the gari.inap.InapClient object you

created in “Task 1: Connecting to the News Server,” page 8.

The API supports many more search parameters, such as date

ranges, sources, and so on, that this section does not describe.

For more information on search parameters, see “Historical

News, Notes,” page 28.

The following is a short static method for searching past

articles:

private static ExtendedEnumeration

doHistorySearch(NewsChannel channel, String pattern)

throws IOException {

HistorySearch search = new HistorySearch(pattern);

search.doReadHeadlines(channel);

HeadlineAnswer answer = new

HeadlineAnswer(channel.receive());

return answer.getElements();

}

Create the gari.news.NewsChannel object, where client is the

gari.inap.InapClient object created in “Task 1: Connecting to

the News Server,” page 8:

NewsChannel channel = new NewsChannel(client);

Code Walk-Through

First, you must create a gari.news.HistorySearch object (page

95) using the full text search pattern in the pattern variable:

HistorySearch search = new HistorySearch(pattern);

The simplest search pattern is simply a series of keywords,

such as “Wisconsin dairy” or “San Francisco” (case does not

matter). You can create much more sophisticated searches,

including ticker symbols and other information, as described

in “Historical News, Notes,” page 28.

NewsEdge Java API Guide

Page 11 of 152

After creating a gari.news.HistorySearch object, have the

HistorySearch object read its results into the NewsChannel.

(The code throws a java.lang.IOException on error.)

search.doReadHeadlines(channel);

The channel's receive method will cause it to receive the

search results into a buffer in a raw, wire format. The

gari.news.HeadlineAnswer class (page 89) parses the results

for the client application, by taking the buffer returned as an

argument for its constructor:

HeadlineAnswer answer = new HeadlineAnswer(channel.receive());

Finally, the HeadlineAnswer object provides a

gari.util.ExtendedEnumeration object (page 128) that the

client application can use to iterate through the results:

return answer.getElements();

How to Use the Code

To use this method, first create an InapClient object as

described in “Task 1: Connecting to the News Server,” page 8,

and then use it to create a NewsChannel (page 102) by passing

the client as an argument to the channel's constructor:

InapClient client = amcConnect(USERNAME, PASSWORD, HOSTNAME);

NewsChannel channel = new NewsChannel(client);

Next, pass the channel and your search pattern to the

doHistorySearch method (for more information about search

pattern syntax, see “How to Search Historical Headlines,

Notes,” page 28):

ExtendedEnumeration result = doHistorySearch(channel, "boise");

Finally, iterate through the enumeration, casting each element

to the gari.news.Headline class (page 85):

while (searchResult.hasMoreElements()) {

Headline metadata = (Headline) searchResult.nextElement();

System.out.println("Headline: " + metadata.getText());

NewsEdge Java API Guide

Page 12 of 152

System.out.println("Resource id: " +

metadata.getResourceID()

+ "\n");

}

The Headline class contains several types of metadata about

the article, including the headline (getText), the article's

unique identifier (getResourceId), associated company stock

ticker symbols (getSymbols), subject codes (getCodes), and

others. For more information, see “Metadata and Content”

(page 36).

Example Application

For a complete, short Java command-line application to search

historical news, see “Listing: Searching Historical News,” page

132.

Task 3: Obtaining and Filtering Real-Time News

In addition to searching past news, your application can

receive real-time news as it is released, by specifying a filter to

indicate which real-time news stories you want to obtain. The

code example provided here uses “*” as a wildcard value to

obtain all the available news stories. You can specify other

filters (see “How to Filter Real-Time Headlines,” page 35), but

for the purposes of the sample, use the wildcard value –

otherwise, it might take a long time to find a story that

matches a specific filter.

Filtering real-time news has some similarities to searching

historical news, but instead of receiving search results

immediately, the application must set up an implementation

of java.util.Observer to be notified whenever a batch of new

stories arrives.

The following is a short static method for starting a real-time

news filter through a gari.news.Profile object (page 103):

public static void startFilter

(NewsChannel channel, String pattern, Observer observer)

NewsEdge Java API Guide

Page 13 of 152

throws IOException {

Profile profile = new Profile("Sample profile", "pattern");

profile.setNumber(1);

ProfileManager manager = new ProfileManager(profile,

channel);

manager.addObserver(new ProfileFilter());

}

WARNING: This code replaces any profile you currently have

in slot 1. If you have an existing profile, change the argument

in setNumber to use a different slot.

Create the gari.news.NewsChannel object (page 102), where

client is the gari.inap.InapClient object created in “Task 1:

Connecting to the News Server,” page 8:

NewsChannel channel = new NewsChannel(client);

The observer argument is any class that implements the

java.util.Observer interface. To implement the interface, the

class must include a public update method to process

incoming news stories, like the following:

public void update(Observable src, Object arg) {

HeadlineAnswer answer = ((ProfileHeadlines)

arg).getHeadlines();

ExtendedEnumeration headlines = answer.getElements();

while (headlines.hasMoreElements()) {

Headline metadata = (Headline)

headlines.nextElement();

// do something with the Headline object

}

}

Each time a new batch of stories arrives, the API invokes this

method so that your client application can process them.

Because the notification takes place on a separate thread, your

application can continue with other work while waiting for

news to arrive.

NewsEdge Java API Guide

Page 14 of 152

Code Walk-Through

First, create a new gari.news.Profile object. The first

parameter is a label for the profile, and the second one is a

search filter (“*” matches everything):

Profile profile = new Profile("Sample profile", "*");

Next, assign the profile to one of the available profile slots (see

“How to Discover Your Entitlements,” page 26 to determine

your allocated slots). It replaces any profile already using that

slot:

profile.setNumber(1);

Set up a gari.news.ProfileManager (page 111) to watch for

incoming news through the profile and associate the profile

with a news channel:

ProfileManager manager = new ProfileManager(profile, channel);

Finally, register your client application's observer with the

manager:

manager.addObserver(new ProfileFilter());

The API now invokes the observer's update method every

time a new batch of matching news stories arrives.

How to Use the Code

To use this method, first create an InapClient object as

described in “Task 1: Connecting to the News Server,” page 8,

and then use it to create a NewsChannel:

InapClient client = amcConnect(USERNAME, PASSWORD, HOSTNAME);

NewsChannel channel = new NewsChannel(client);

Next, create a class that implements the java.util.Observer

interface. The update method receives an argument of type

gari.news.ProfileHeadlines (page 110) that the client

NewsEdge Java API Guide

Page 15 of 152

application can use to get a HeadlineAnswer object, as in the

history search:

public void update(Observable src, Object arg) {

HeadlineAnswer answer = ((ProfileHeadlines)

arg).getHeadlines();

ExtendedEnumeration headlines = answer.getElements();

while (headlines.hasMoreElements()) {

Headline metadata = (Headline) headlines.nextElement();

System.out.println("Headline: " + metadata.getText());

System.out.println("Resource id: " +

metadata.getResourceID() + "\n");

}

}

Finally, pass the channel and your search pattern to the

startFilter method (for more information about search pattern

syntax, see “How to Search Historical Headlines, Notes,” page

28):

startFilter(channel, "*", observer);

The observer receives batches of stories until you end the

application.

Example Application

For a complete, short Java command-line application to obtain

and filter real-time news, see “Listing: Obtaining and Filtering

Real Time News,” page 134.

Task 4: Retrieving the Full Text of an Article

The two previous examples in this chapter show how the

client application can receive gari.news.Headline objects

(page 85) either through a history search or by filtering

incoming news in real-time through a Profile filter.

The Headline object contains metadata such as the text of the

headline, company stock ticker symbols, and subject codes,

but does not contain the actual text of a news story. The

NewsEdge Java API Guide

Page 16 of 152

getResourceID() method in the Headline class returns a

resource identifier that is the key for retrieving the full text.

Given a NewsChannel (see earlier examples) and a

ResourceID (page 116) the following simple static method

returns a string containing the story text:

private static String

getArticle(NewsChannel channel, ResourceID resourceId)

throws IOException {

StoryRequest request = new StoryRequest(resourceId);

request.doReadStory(channel);

StoryAnswer answer = new StoryAnswer(channel.receive());

return answer.getText();

}

By default, story text is delivered in the XMLNews XML

format. For information on how to select alternative formats

(such as HTML), see “How to Obtain the Content of a Story,”

page 42.

Code Walk-Through

First, create a new gari.news.StoryRequest object (page 120)

with the story's unique resource identifier:

StoryRequest request = new StoryRequest(resourceId);

Next, use the request's doReadStory method to read the story

text into a buffer in the news channel:

request.doReadStory(channel);

(This throws a java.io.IOException if there is an error reading

the story text.)

Next, create a new gari.news.StoryAnswer object (page 119)

to parse the text from the news channel's buffer:

StoryAnswer answer = new StoryAnswer(channel.receive());

NewsEdge Java API Guide

Page 17 of 152

Finally, use the answer's getText() method to retrieve the text

of the story as a string (which can then be saved to disk,

passed to an XML parser, and so on):

return answer.getText();

How to Use the Code

To use this method, first create an InapClient object as

described in “Task 1: Connecting to the News Server,” page 8,

and then use it to create a NewsChannel:

InapClient client = amcConnect(USERNAME, PASSWORD, HOSTNAME);

NewsChannel channel = new NewsChannel(client);

Either initiate a history search, or start a real-time profile filter,

as described in “Task 2: Searching Historical News” (page 9)

or “Task 3: Obtaining and Filtering Real-Time News” (page

12). In either case, the application eventually ends up iterating

through an enumeration of gari.news.Headline objects.

Extract the resource identifier from the Headline object:

ResourceID resourceId = headline.getResourceID();

Pass the channel and the resourceId to the getArticle method.

The return value is a string containing the article (on error, the

method throws a java.io.Ioexception):

String article = getArticle(channel, resourceId);

Example Application

For a complete, short Java command-line application to

retrieve the full text of an article, see the source code listing

“Listing: Retrieving the Full Text of an Article,” page 136.

NewsEdge Java API Guide

Page 18 of 152

Chapter 3: How To ...

This chapter provides brief explanations and code snippets for

common tasks. It does not provide detailed code walk-

throughs as in the “Quick Start” chapter, so you may wish to

refer to the “API” chapter (page 45) for additional information.

This chapter covers the following common tasks:

Connecting and Authentication

• “How to Connect to the Server” (page 19)

• “How to Connect Through a Proxy” (page 21)

• “How to Connect Through Port 80 or Port 443” (page

22)

• “How to Change Your Connection Password” (page

23)

• “How to Monitor the Connection's Health” (page 24)

• “How to Configure Logging” (page 25)

• “How to Discover Your Entitlements” (page 26)

Historical News

• “How to Search Historical Headlines” (page 27)

• “How to Change the Number of Search Results

Returned” (page 29)

• “How to Limit Search Results by Date” (page 30)

• “How to Limit a Search by Wires” (page 31)

Real-Time News

• “How to Start a Real-Time News Feed” (page 33)

• “How to Filter Real-Time Headlines” (page 35)

• “How to Examine your Profiles” (page 35)

Metadata and Content

• “How to Obtain a Story's Subject Codes or Stock

Ticker Symbols” (page 37)

NewsEdge Java API Guide

Page 19 of 152

• “How to Obtain the Provider of a Story” (page 38)

• “How to Obtain the Service of a Story” (page 38)

• “How to Obtain the Publication Date/Time of a Story”

(page 39)

• “How to Obtain the Short Identifier for a Story” (page

40)

• “How to Obtain the Headline Text of a Story” (page

41)

• “How to List the Available Wires” (page 41)

Connecting and Authentication

Creating a connection to the NewsEdge News Server is the

basis for all other interaction with the server. This section

describes how to make a basic connection to the server, how to

connect through a proxy, and how to connect through port 80

and 443 (for firewall traversal).

In addition to creating a connection to the News Server, there

are several News Server management tasks you may perform,

including changing your connection password and

monitoring the connection’s health.

Note that you can have only one connection with the News

Server active at a time for each account. Creating a new

connection closes an existing one.

How to Connect to the Server

Synopsis

LoginData login = new LoginData(username, password, "JAPI");

InetAddress address = InetAddress.getByName(hostname);

client = new InapClient(address, Channel.STARTUP_SERVICE, login);

NewsChannel channel = new NewsChannel(client);

NewsEdge Java API Guide

Page 20 of 152

Prerequisites (all available from NewsEdge Customer Support)

Hostname of News Server

Username

Password

Classes Used

gari.inap.LoginData (page 48)

gari.net.Channel (page 76)

gari.inap.InapClient (page 46)

gari.net.QuipException (page 83)

gari.net.TimeoutException (page 84)

gari.news.NewsChannel (page 102)

java.io.IOException

java.net.InetAddress

Notes

The InapClient constructor requires an IP address

(java.net.InetAddress), not a string or hostname. The third

argument to the InapClient constructor does not currently

matter – you may want to use a combination of “JAPI” and

your company name as a convention (for example,

“JAPIAcmeFinance”).

The method throws QuipException or IOException. The

client can distinguish TimeoutException as a subclass of

QuipException if there is an error. The TimeoutException

indicates that the library could not connect within time limits.

By default, the method uses TCP port 6973.

Channel.StartupService and Channel.NewsService are

identical services. For information on connecting through

other ports, see “How to Connect Through Port 80 or Port

443,” page 22.

NewsEdge Java API Guide

Page 21 of 152

The client application performs most of its operations through

a NewsChannel object. However, in addition to creating a

news channel, the client application also uses the InapClient

object to change its password (see “How to Change Your

Connection Password,” page 23) and to set up observers to

monitor the connection health (see “How to Monitor the

Connection's Health,” page 24). Users can create multiple

channels, if there is only one underlying InapClient object.

For an introductory walk-through of connecting to the News

Server, refer to “Task 1: Connecting to the News Server,” page

8 in the “Quick Start” chapter.

For information on how to connect through an Internet proxy,

see “How to Connect Through a Proxy,” page 21.

How to Connect Through a Proxy

Synopsis

ProxyData proxy = new ProxyData("proxy.example.org", "8080");

client = new InapClient(address, Channel.STARTUP_SERVICE, login,

proxy);

Prerequisites

Hostname of News Server

Username

Password

Hostname or IP address of your proxy

TCP port used by your proxy (e.g., 8080)

Username and password, if required by your proxy

Classes Used

gari.net.ProxyData (page 77)

gari.inap.InapClient (page 46)

NewsEdge Java API Guide

Page 22 of 152

gari.util.detectProxy (optional) (page 129)

Notes

The gari.util.ProxyData class allows you to configure proxy

data.

There is also a constructor that accepts a username and

password (see “ProxyData Class,” page 77), if your proxy is

password-protected:

ProxyData proxy = new ProxyData("proxy.example.org", "8080",

"username", "password");

The gari.inap.InapClient class has a constructor that accepts

the proxy data as a fourth argument (see “Task 1: Connecting

to the News Server,” page 8 and “How to Connect to the

Server,” page 19).

If you are working with JDK 1.3 or 1.4, you can use the

gari.util.detectProxy class to auto-detect proxies that are not

password protected. Use any well-known HTTP URL:

detectProxy proxyTest = new detectProxy(new

URL("http://www.example.org"));

The isProxySet method indicates whether a proxy was

detected. The getProxyHost and getProxyPort return values

that can be passed to the ProxyData constructor. This method

is designed for use mainly by Java applets.

How to Connect Through Port 80 or Port 443

Synopsis

InapClient client = InapClient(address, Channel.HTTP_SERVICE,

login);

Prerequisites:

Hostname of News Server

Username

NewsEdge Java API Guide

Page 23 of 152

Password

Classes Used

gari.inap.LoginData (page 48)

gari.net.Channel (page 76)

gari.inap.InapClient (page 46)

Notes

Connecting to the news server through port 80 using

“Channel.HTTP_SERVICE” as the service and TCP port 80, or

through port 443 using “Channel.HTTPS_SERVICE” as the

service and TCP port 443, often allows connections through

corporate firewalls, which might block outgoing connections

to the default port (6973) on the news server.

While HTTPS_SERVICE uses the same port as secure,

encrypted SSL/TLS connections for web sites – to take

advantage of open ports in firewalls – it does not actually use

SSL/TLS. There is no difference in encryption or security

using HTTP_SERVICE or HTTPS_SERVICE.

How to Change Your Connection Password

Synopsis

LoginData newLogin = new LoginData(USERNAME, OLD_PASSWORD,

"JAPI", NEW_PASSWORD);

client.change_password(newLogin);

Prerequisites

An InapClient object (see “How to Connect to the Server,” page

19

Your existing username and password

Your new password

NewsEdge Java API Guide

Page 24 of 152

Classes Used

gari.inap.LoginData (page 48)

gari.inap.InapClient (page 46)

gari.net.QuipException (page 83)

Notes

Create a Login object as for the connection, using the old

password as the second argument to the constructor, but

adding the new password as the fourth argument.

The method throws a java.io.IOException or a

gari.net.QuipException if the change is unsuccessful.

How to Monitor the Connection's Health

Synopsis (main code)

client.addQuipEventListener(new MyListener());

Synopsis (listener)

class MyListener implements QuipEventListener

{

public void QuipEventNotification (QuipEvent event)

{

System.err.println("Event: " + event.getType() + " (" +

event.getMessage() + ")");

}

}

Prerequisites

An InapClient object (see “How to Connect to the Server,” page

19)

Classes Used

gari.inap.InapClient (page 46)

NewsEdge Java API Guide

Page 25 of 152

gari.net.QuipEventListener (interface) (page 75)

gari.net.QuipEvent (page 81)

Notes

The library can inform the client application of major events in

the connection, such as a disconnect or a system error.

Whenever there is a connection event, the library invokes the

listener's QuipEventNotification method to report it. (See

“QuipEvent Class, Methods,” page 81 for a list of event types

and methods available.)

While it is possible to use this interface for rudimentary

logging of events, it is generally better for client applications

to configure the library's own logging support through the

Apache Foundation Log4J library (see “How to Configure

Logging”, page 25).

How to Configure Logging

Synopsis (Property File)

log4j.rootLogger=DEBUG, A1

log4j.appender.A1=org.apache.log4j.ConsoleAppender

log4j.appender.A1.layout=org.apache.log4j.PatternLayout

log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %c %x -

%m%n

log4j.logger.demo=INFO

Prerequisites

File named log4j.properties in the root class directory of the client

application

Notes

The NewsEdge Java API uses the Apache Foundation

Log4J logging library to make tracing, management, and

NewsEdge Java API Guide

Page 26 of 152

debugging information available to users. Log4J uses six

different logging levels, from least to most severe:

1. TRACE

2. DEBUG

3. INFO

4. WARN

5. ERROR

6. FATAL

As is usual with Log4J, loggers are named after the packages

and classes in the library. Adding the following line to the

log4j.properties file, for example, disables all logging messages

below the ERROR level for the entire library (every class in a

package beginning with “gari”):

log4j.logger.gari=ERROR

The following line enables all log messages for the gari.net

package (since TRACE is the lowest level):

log4j.logger.gari.net=TRACE

There are other ways for an application to configure logging

beyond the use of a properties file. For more information, see

the Log4J web site http://logging.apache.org/log4j/

How to Discover Your Entitlements

Synopsis

UserNewsInfoRequest.doUserNewsInfoRequest(channel);

UserNewsInfo info = new UserNewsInfo(channel.receive());

Prerequisites

A NewsChannel object (see “How to Connect to the Server,”

page 19)

http://logging.apache.org/log4j/

NewsEdge Java API Guide

Page 27 of 152

Classes Used

gari.news.NewsChannel (page 102)

gari.news.UserNewsInfoRequest (page 124)

gari.news.UserNewsInfo (page 122)

gari.news.ParsingException (page 127)

Notes

The UserNewsInfo constructor (page 122) throws a

ParsingException (page 127) if the result is scrambled. It has

methods to get entitlement information such as the update

frequency, maximum profiles, and so on.

Historical News

Historical news refers to past articles retained on the

NewsEdge News Server. This section describes how to search

historical headlines, how to change the number of search

results returned and how to limit results by date. For

additional information on searching historical news, see “Task

2: Searching Historical News,” page 9.

How to Search Historical Headlines

Synopsis

HistorySearch search = new HistorySearch("*");

search.doReadHeadlines(channel);

HeadlineAnswer answer = new HeadlineAnswer(channel.receive());

ExtendedEnumeration e = answer.getElements();

while (e.hasMoreElements()) {

Headline headline = (Headline)e.nextElement();

// process the Headline object

}

NewsEdge Java API Guide

Page 28 of 152

Prerequisites

A full-text search pattern for the stories you want to find

(explained below)

A NewsChannel object (see “Task 1: Connecting to the News

Server,” page 8)

Classes Used

gari.news.NewsChannel (page 102)

gari.news.HistorySearch (page 95)

gari.news.HeadlineAnswer (page 89)

gari.util.ExtendedEnumeration (page 128)

gari.news.Headline (page 85)

Notes

The client application can specify a pattern for a history

search. The following table describes the pattern matching

symbols:

Pattern

Description

* Match anything.

word1 word2 Match word1 or word2.

+word The specified word is required in the results.

-word The specified word is not allowed in the

results.

/symbol Searches for a stock ticker symbol (e.g.,

“/MSFT”)

NOTE: Use only the symbol. Do not include

the exchange.

“a phrase” Match the words within the quotation

marks as a phrase.

To search for stories containing the words “oil” or “refinery”

anywhere, use the following:

NewsEdge Java API Guide

Page 29 of 152

HistorySearch search = new HistorySearch("oil refinery");

To search for stories containing the words “oil” and

“refinery”, use the following:

HistorySearch search = new HistorySearch("+oil +refinery");

To search for stories containing the words “oil” but not

“refinery”, use the following:

HistorySearch search = new HistorySearch("+oil -refinery");

To search for the exact phrase “oil refinery” use the following:

HistorySearch search = new HistorySearch("\"oil refinery\"");

To search for stories about Exxon (ticker symbol “XOM” on

the NYSE), use the following:

HistorySearch search = new HistorySearch("/XOM");

ExtendedEnumeration is derived from the regular

java.util.Enumeration but adds a count() method. The client

application can treat it as a regular enumeration.

How to Change the Number of Search Results Returned

Synopsis

HistorySearch search = new HistorySearch("*");

search.setMaxHits(2);

search.setGetExactHitCount(true);

HeadlineAnswer answer = new HeadlineAnswer(channel.receive());

ExtendedEnumeration e = answer.getElements();

while (e.hasMoreElements()) {

Headline headline = (Headline)e.nextElement();

// process the Headline object

}

Prerequisites

A full-text search pattern for the stories you want to find

(explained below)

NewsEdge Java API Guide

Page 30 of 152

A NewsChannel object (see “Task 1: Connecting to the News

Server,” page 8)

Classes Used

gari.news.HistorySearch (page 95)

Notes

The setGetExactHitCount method call ensures that no more

than the maximum number of search items specified are

returned. If you do not specify true for the

setGetExactHitCount method, the actual number of results

returned may be slightly higher than the value you specify.

For information on how to page through results, see

“HeadlineContext Class,” page 90.

How to Limit Search Results by Date

Synopsis

HistorySearch search = new HistorySearch("*");

search.setDateRange(">20070101 00:00 <20070131 23:59");

HeadlineAnswer answer = new HeadlineAnswer(channel.receive());

ExtendedEnumeration e = answer.getElements();

while (e.hasMoreElements()) {

Headline headline = (Headline)e.nextElement();

// process the Headline object

}

Prerequisites

A full-text search pattern for the stories you want to find

(explained below)

A NewsChannel object (see “Task 1: Connecting to the News

Server,” page 8)

NewsEdge Java API Guide

Page 31 of 152

Classes Used

gari.news.HistorySearch (page 95)

Notes

The example searches for articles published in January 2007.

The format is “<YYYYMMDD” for articles published before or

on a date, “>YYYYMMDD” for articles published on or after a

date, or both combined for a range “>YYYYMMDD

<YYYYMMDD”.

You also may add time in “HH:SS” format after the date (with

a space in between the date and time) to specify a time in 24-

hour format, using the U.S. Eastern time zone.

To search for articles published on or after January 1, 2007, use

the following:

search.setDateRange(">20070101");

To search for articles published on or before 5:00 pm (Eastern)

on March 1, 2007, use the following:

search.setDateRange("<20070301 17:00");

To search for articles published on or after 5:00 pm (Eastern)

on February 28, 2007, use the following:

search.setDateRange(">20070228 17:00");

To search for articles published between 5:00 pm (Eastern) on

February 28 and 5:00 pm on March 1, 2007, use the following:

search.setDateRange(">20070228 17:00 <20070301 17:00");

For more information on search patterns, see “How to Search

Historical Headlines, Notes,” page 28.

How to Limit a Search by Wires

Synopsis #1 (history search)

search.setWires(“[BW PR”);

search.doReadHeadlines(channel);

NewsEdge Java API Guide

Page 32 of 152

HeadlineAnswer answer = new HeadlineAnswer(channel.receive());

Synopsis #2 (real-time news)

profile.setWires(“[BW PR”);

ProfileManager manager = new ProfileManager(profile, channel);

manager.addObserver(new MyObserver());

Note: See “How to List the Available Wires,” page 41.

Prerequisites

In order to limit a search by wires, you require the two-letter

abbreviation for the wires you want to include or exclude. See

“How to List the Available Wires,” page 41.

Classes Used

gari.news.MetaHeadlineQuery (page 99, and the base class for

gari.news.Profile and gari.news.HistorySearch)

Notes

The MetaHeadlineQuery is the common base class for Profile

and HistorySearch. This technique works for both historical

and real-time news.

Before executing a history search, or starting a real-time

profile, you can use the setWires method (page 100) to select

which wires are included or excluded.

The synopses use the two-letter wire identifiers available

through WireInfo getBaseWire method (page 125), not the

eight-character provider/service identifiers available through

gari.news.ResourceID (page 116).

The list of available wires is part of entitlement information

(see “How to Discover Your Entitlements,” page 26 and “How

to List the Available Wires,” page 41).

NewsEdge Java API Guide

Page 33 of 152

The argument to the method is a string beginning with “[“

(include) or “]” (exclude), followed by a list (which may or

may not be space-separated) of two-letter identifiers. A blank

string means include all wires.

The following are examples of the argument:

“”— include all wires

“[PR” — include only PR Newswire

“] PR” — include everything except PR Newswire

“[PR BW DJ” — include only PR Newswire, Business Wire, and

Dow Jones

“] PR BW DJ” — include everything except PR Newswire, and

Dow Jones

Real-Time News

Real-time news refers to news stories as they arrive from the

providers. This section describes how to filter real news as it

arrives. The Moody’s Analytics contract or product you are

using determines what news is available to you. It is possible

to backfill a feed by including recent stories as well as

newly- arrived ones.

How to Start a Real-Time News Feed

Synopsis #1 (main client code)

Profile profile = new Profile("Test", "*");

// will overwrite any existing profile in this slot ...

profile.setNumber(1);

profile.setBackfill(true);

ProfileManager manager = new ProfileManager(profile, channel);

manager.addObserver(new MyObserver());

Synopsis #2 (observer class)

public class MyObserver implements Observer {

public void update (Observable o, Object arg)

NewsEdge Java API Guide

Page 34 of 152

{

ProfileHeadlines pheadlines = (ProfileHeadlines)arg;

HeadlineAnswer answer = pheadlines.getHeadlines();

ExtendedEnumeration e = answer.getElements();

while (e.hasMoreElements()) {

Headline headline = (Headline)e.nextElement();

// process headline

}

}

Prerequisites

A NewsChannel object (see “Task 1: Connecting to the News

Server,” page 8)

Classes Used

gari.news.NewsChannel (page 102)

gari.news.Profile (page 103)

gari.news.ProfileManager (page 111)

gari.news.ProfileHeadlines (page 110)

gari.news.HeadlineAnswer (page 89)

gari.news.Headline (page 85)

gari.util.ExtendedEnumeration (page 128)

java.util.Observer (interface)

java.util.Observable (interface)

Notes

Use any profile name that is meaningful to the client

application. (This example uses “Test”). The library sends

incoming stories to the observer class asynchronously: the rest

of the application can continue running.

The client application can discover the maximum number of

profile slots available through the UserInfo class (see “How to

Discover Your Entitlements,” page 26).

NewsEdge Java API Guide

Page 35 of 152

Note that uploading a profile to the server overwrites any

existing profile in the slot. If you have an existing profile,

change the argument in setNumber to use a different slot.

For additional information, see “Task 3: Obtaining and

Filtering Real-Time News,” page 12.

How to Filter Real-Time Headlines

Synopsis

Profile profile = new Profile("Test", "oil refinery");

Prerequisites

A NewsChannel object (see “Task 1: Connecting to the News

Server,” page 8)

Classes Used

gari.news.Profile (page 103)

Notes

Filtering real-time headlines uses the same patterns as the

history search and returns only articles that match the search

pattern (words, phrases, ticker symbols, and so on). For more

information on the history search, see “Historical News,” page

27.

How to Examine your Profiles

Synopsis

ProfileGroupRequest.doReadProfileGroup(channel);

ProfileGroup group = new ProfileGroup(channel.receive());

ExtendedEnumeration e = group.getElements();

while (e.hasMoreElements()) {

NewsEdge Java API Guide

Page 36 of 152

Profile profile = (Profile)e.nextElement();

// process the profile

}

Prerequisites

A NewsChannel object (see “Task 1: Connecting to the News

Server,” page 8)

Classes Used

gari.news.NewsChannel (page 102)

gari.news.ProfileGroupRequest (page 109)

gari.news.ProfileGroup (page 107)

gari.util.ExtendedEnumeration (page 128)

gari.news.Profile (page 103)

Notes

Once you have each profile, you can use getNumber() to find

the profile's number, or getName() to find the name you

assigned when you created the profile. You can use these

classes to find a profile you have already created, or to look for

an empty slot for a new profile.

How to Filter Articles by Wire

See “How to Limit a Search by Wires,” page 31.

Metadata and Content

“Metadata” is information about news stories (and other

stories), while “content” is the actual news content.

The primary access point for a story is the gari.news.Headline

object (see “Historical News,” page 27 and “Real-Time News,”

page 33 for information on how to get Headline objects for

historical or real-time stories).

NewsEdge Java API Guide

Page 37 of 152

Depending on the delivery format you choose, much more

information may be available through the XML metadata

accompanying the story than is covered here (see the

appropriate format guides for details). This guide describes

metadata available only directly through API calls.

How to Obtain a Story's Subject Codes or Stock Ticker Symbols

Synopsis

String codeString = headline.getCodes();

String symbolString = headline.getSymbols();

Prerequisites

A Headline object with information about a story (see

“Historical News,” page 27 and “Real-Time News,” page 33)

Classes Used

gari.news.Headline (page 85)

Notes

The codeString is like the following (only typically much

longer):

IC/comp;IC/publ;NI/Computer_Systems;NI/Info_Services

Each entry consists of the vocabulary type (such as “IC” for

“industry code”) followed by a forward slash (“/”), followed

by the code (such as “comp” for computing). Entries are semi-

colon-separated.

The symbolString looks similar, but in this case each entry

consists of an abbreviation for the exchange, followed by a

colon (“:”), followed by a company ticker symbol:

NYSE:PDT;NYSE:MFC

It is easy to split either string into a string array using the

standard java.lang.String split method with the argument “;”:

NewsEdge Java API Guide

Page 38 of 152

String codes[] = codeString.split(";");

String symbols[] = symbolString.split(";");

The same method works for splitting an entry, using “/” or “:”

as the argument:

String symbolEntry[] = symbol.split(“/”);

How to Obtain the Provider of a Story

Synopsis

ResourceID id = headline.getResourceID();

String providerCode = id.getProvider();

Prerequisites

A Headline object with information about a story item (see

“Historical News,” page 27 and “Real-Time News,” page 33)

Classes Used

gari.news.Headline (page 85)

gari.news.ResourceID (page 116)

Notes

The name of the provider may also be available in the XML

metadata (see “How to List the Available Wires,” page 41).

How to Obtain the Service of a Story

Synopsis

ResourceID id = headline.getResourceID();

String service = id.getService();

NewsEdge Java API Guide

Page 39 of 152

Prerequisites

A Headline object with information about a story (see

“Historical News,” page 27 and “Real-Time News,” page 33)

Classes Used

gari.news.Headline (page 85)

gari.news.ResourceID (page 116)

Notes

News providers may offer multiple services and products,

such as “USPR ” for “U.S. Press Releases”.

The service may also be available in the XML metadata (see

“How to List the Available Wires,” page 41).

How to Obtain the Publication Date/Time of a Story

Synopsis

ResourceID id = headline.getResourceID();

String date = id.getDate();

String time = id.getTime();

Prerequisites

A Headline object with information about a story (see

“Historical News,” page 27 and “Real-Time News,” page 33)

Classes Used

gari.news.Headline (page 85)

gari.news.ResourceID (page 116)

NewsEdge Java API Guide

Page 40 of 152

Notes

Note that this is the official publication date of the story. It

stays the same for all releases, even if subsequent releases

come out on a different date.

The date is in YYYYMMDD format (for example “20070227”

for February 27, 2007). The time is in HHMM format (for

example, “1023” for 10:23 EST or 10:23 EDT during daylight

savings time).

Depending on your news format, more date information is

available through the XML metadata accompanying the news

story content. See the format guides for details.

How to Obtain the Short Identifier for a Story

Synopsis

ResourceID id = headline.getResourceID();

String ident = id.getID();

Prerequisites

A Headline object with information about a story (see

“Historical News,” page 27 and “Real-Time News,” page 33)

Classes Used

gari.news.Headline (page 85)

gari.news.ResourceID (page 116)

Notes

Using digits, characters and underscores, the short identifier is

guaranteed to be unique for the date/time/provider/service

combination (for example, “_BW5880”). The length of the

identifier is not fixed. This is sometimes (but not always) the

same as the provider’s slug for the story.

NewsEdge Java API Guide

Page 41 of 152

How to Obtain the Headline Text of a Story

Synopsis

String text = headline.getText();

Prerequisites

A Headline object with information about a story (see

“Historical News,” page 27 and “Real-Time News,” page 33)

Classes Used

gari.news.Headline (page 85)

Notes

Note that this is the display headline (for example, “Avigen to

Present At Oppenheimer Pain Management Investor

Conference”) for use in a list of headlines, search results, and

so on. The display headline may be shorter than the full

headline included in the story content.

How to List the Available Wires

Synopsis

UserNewsInfo info = getInfo(channel);

WireList wires = info.getWireList();

Iterator it = wires.iterator();

while (it.hasNext()) {

WireInfo wire = (WireInfo)it.next();

String id = wire.getBaseWire();

String provider = wire.getProviderService().substring(0,

8);

String service =

wire.getProviderService().substring(8, 8);

// etc.

}

NewsEdge Java API Guide

Page 42 of 152

Classes Used

gari.news.NewsChannel (page 102)

gari.news.UserNewsInfo (page 122)

gari.news.WireList (page 126)

gari.news.WireInfo (page 124)

java.util.Interator

Notes

One feature of entitlements is a list of available wires. The

WireInfo object (page 124) contains information about one

source. Also refer to “How to Discover Your Entitlements,”

page 26.

The getBaseWire returns a two-letter code for a wire, which

can be used for limiting search results (see “How to Limit a

Search by Wires,” page 31.

The getProviderService returns the eight-character provider

id and the eight-character service id concatenated into a 16-

character string.

Note that there is one WireInfo object for every

provider/service combination, but the two-letter code is for

provider only. For example, if Dow Jones has 10 services, there

will be 10 WireInfo objects all with the two-letter code “DJ”

(as returned by getBaseWire), but different services in

getProviderService.

How to Obtain the Content of a Story

Synopsis

StoryRequest request = new StoryRequest(headline.getResourceID());

request.setStyleSheet("XMLNEWS");

request.doReadStory(channel);

StoryAnswer answer = new StoryAnswer(channel.receive());

NewsEdge Java API Guide

Page 43 of 152

String content = answer.getText();

Prerequisites

A Headline object with information about a story (see

“Historical News,” page 27 and “Real-Time News,” page 33)

Information Required

(Optional) style sheet name for desired format (such as “HTML”

or “XMLNEWS”)

Classes Used

gari.news.NewsChannel (page 102)

gari.news.Headline (page 85)

gari.news.ResourceID (page 116)

gari.news.StoryRequest (page 120)

gari.news.StoryAnswer (page 119)

Notes

“Content” is the actual story. This section describes how to

obtain the content of a story.

For additional information, see the code walk-through in

“Task 4: Retrieving the Full Text of an Article,” page 16.

Specifying the style sheet (format) for the story is optional. The

default is “XMLNEWS”:

request.setStyleSheet("XMLNEWS");

The following is a list of available formats:

XMLNEWS (default) – see http://www.xmlnews.org/

HTML – see http://www.w3.org/Markup/

TEXT

http://www.xmlnews.org/
http://www.xmlnews.org/
http://www.w3.org/Markup/

NewsEdge Java API Guide

Page 44 of 152

NEWSML (NEWSML with embedded XHTML) – see

http://www.newsml.org/

NITF (standalone NITF) – see http://www.nitf.org/

http://www.newsml.org/
http://www.nitf.org/

NewsEdge Java API Guide

Page 45 of 152

Chapter 4: API

This chapter contains reference documentation for the

NewsEdge library, concentrating on the classes, interfaces,

constructors, methods and constants that client applications

normally use. It does NOT document parts of the library that

are deprecated or designed mainly for internal use.

The NewsEdge library includes the following packages:

gari.inap Package (higher-level networking support [transaction

layer]), page 46

gari.media Package (API for the media server), page 50

gari.media.iptc Package (advanced image metadata), page 59

gari.net Package (lower-level networking support [messaging

layer]), page 75

gari.news Package (main application layer), page 85

gari.util package (utility classes and methods), page 127

This chapter lists the classes in alphabetical order within each

package. For simplicity, the examples in the text usually omit

package names for classes and interfaces in the same package

as the one being documented and for the package name in

java.lang package.

For an overview of the structure of the NewsEdge library,

including information on the network stack and messaging

patterns, see “Architectural Overview” (page 139).

The classes use the Apache Foundation Log4J library for

logging messages of different severities. You can configure

logging separately for each package or even for each class.

Note that the log4j.jar file must be on the client application's

class path or the library methods will fail. There should also

be a log4j.properties file in the root class directory, unless the

application is configuring logging through some other

mechanism. For more information, see “How to Configure

Logging” (page 25).

NewsEdge Java API Guide

Page 46 of 152

gari.inap Package

The gari.inap package contains the transaction networking

layer for connecting to the NewsEdge News Server. The

message/packet layer is in gari.net (page 75) and is mostly

invisible to the client application.

The classes of interest to client applications are InapClient,

which encapsulates the connection to the news server, and

LoginData, which holds authentication information for

making a connection.

InapClient Class

Synopsis

LoginData login = new LoginData(username, password, "JAPI");

Java.net.InetAddress address =

InetAddress.getByName(hostname);

InapClient client = new InapClient(address, login);

Notes

This class represents a connection to the news server. You

need to create an InapClient object before you can perform

most other actions (see “Task 1: Connecting to the News

Server,” page 8). Note that the classes in the gari.media

package (page 50) do not use InapClient.

This class allows client applications to log in, manage the

connection, register listeners for events, and so on. It also

contains the connection state that is passed to other objects.

InapClient is a sub-class of QuipClient (page 79) and most of

its methods are defined there.

Constructors

InapClient (java.net.InetAddress serverAddress, LoginData login)

throws java.io.IOException, gari.net.QuipException

NewsEdge Java API Guide

Page 47 of 152

InapClient (java.net.InetAddress serverAddress, LoginData login,

gari.net.ProxyData proxy)

throws java.io.IOException, gari.net.QuipException

InapClient (java.net.InetAddress serverAddress, short port,

LoginData login, gari.net.ProxyData proxy)

throws java.io.IOException, gari.net.QuipException

The first two examples are convenience constructors, while the

third one is the full form.

The serverAddress parameter is the IP address of the news

server. The port parameter is the TCP port for connecting to

the server. The default port is 6973, STARTUP_SERVICE.

There are constants for the port numbers available in the

gari.net.Channel class (page 77):

gari.net.Channel.ADMIN_SERVICE – 6963

gari.net.Channel.HTTP_SERVICE – 80

gari.net.Channel.HTTPS_SERVICE – 443

gari.net.Channel.NEWS_SERVICE – 6973

gari.net.Channel.QUOTES_SERVICE – 6983

gari.net.Channel.STARTUP_SERVICE – 6973

Many firewalls block most ports but allow outgoing

connections through port 80 or 443. In such a case, use

HTTP_SERVICE or HTTPS_SERVICE(see “How to Connect

Through Port 80,” page 22).

The login parameter contains the user name and password

(see “LoginData Class,” page 48).

The proxy parameter contains information for clients that

connect to the Internet through a proxy server (see “ProxyData

Class,” page 77 and “How to Connect Through a Proxy,” on

page 21).

NewsEdge Java API Guide

Page 48 of 152

Methods

See also the methods inherited from gari.net.QuipClient

(page 79).

short changePassword (LoginData login)

throws java.io.IOException. gari.net.QuipException, gari.net.TimeoutException

Use this method to set a new password for connecting to the

news server.

This method throws a java.io.IOException for a general

networking error, a gari.net.TimeoutException if the server

does not respond or a gari.net.QuipException for any other

errors.

The LoginData object must contain your current password.

The new password string is a separate field (see “LoginData

Class,” page 48), passed as the optional fourth parameter to

the LoginData constructor.

Constants

LOGIN_TIMEOUT

The number of milliseconds before a login attempt times out.

This is hard-coded to 20,000 (i.e., 20 seconds).

LoginData Class

Synopsis

LoginData login = new LoginData(username, password, "JAPI");

Notes

This class encapsulates authentication information for

connecting to the server or changing the password. The third

argument (version) in the constructor does not really matter,

since it is used just for tracking on the server side. The

NewsEdge Java API Guide

Page 49 of 152

examples use “JAPI”. You may want to use a combination of

“JAPI” and your company name as a convention (for example,

“JAPIAcmeFinance”).

Constructors

LoginData ()

Default constructor to create an empty object. The client

application must use the set* methods (page 49) to specify

values.

LoginData (String username, String password, String version)

Convenience constructor for creating an object to authenticate

with the server through an InapClient (page 46).

LoginData (String username, String password, String version, String

new_password)

Convenience constructor for creating an object to change the

password through the InapClient changePassword method

(page 48).

The username is assigned by NewsEdge Customer Support.

The password is initially assigned by NewsEdge Customer

Support, but the client may choose to change it. Version is not

currently used, set it to “JAPI”, or a combination of “JAPI”

and your company name (e.g., “JAPIAcmeFinance”).

Use new_password only when calling the InapClient

changePassword method.

Methods

void setUsername (String userName)

String getUsername ()

Setter and accessor for the username value.

NewsEdge Java API Guide

Page 50 of 152

void setPassword (String password)

String getPassword ()

Setter and accessor for the password value.

void setNewPassword (String newPassword)

Setter and accessor for the new password (when using

InapClient.changePassword).

void setVersionString (String version)

String getVersion ()

Setter and accessor for the version string (the third argument
to the constructor). The value does not currently matter. Use

“JAPI”, or a combination of “JAPI” and your company name

(e.g., “JAPIAcmeFinance”).

gari.media Package

The gari.media package contains the API for the NewsEdge

News Server, which allows client applications to download

photos and other multimedia resources associated with

stories. This package does not use a gari.inap.InapClient or

gari.news.NewsChannel, but connects directly to the media

server, using its own network stack (see “Architectural

Overview,” page 139).

MediaCommConstants Interface

The interface consists only of constants, inherited by

MediaConnection (page 52).

Constants

MEDIAD_THUMBNAIL_RES

The image is in very low resolution, suitable for a thumbnail

(100x100 pixels). The longest dimension will be scaled to 100

NewsEdge Java API Guide

Page 51 of 152

pixels. The smaller side will be adjusted accordingly, while

preserving the aspect ratio of the image.

MEDIAD_MIDSIZE_RES

The image is in a resolution slightly larger than a thumbnail

(200x200 pixels). The longest dimension will be scaled to 200

pixels. The smaller side will be adjusted accordingly, while

preserving the aspect ratio of the image.

MEDIAD_PREVIEW_RES

The image is in a preview resolution, where details are visible

(400x400 pixels). The longest dimension will be scaled to 400

pixels. The smaller side will be adjusted accordingly while

preserving the aspect ratio of the image.

MEDIAD_HALFSIZE_RES

The image is at half the original resolution.

MEDIAD_ORIGINAL_RES

The image is at its original resolution.

MEDIAD_CUSTOM_RES

The image is in a custom resolution, using dimensions

supplied by the client application.

MEDIAD_ASSOCIATED

Specify to retrieve a related file. For example, use this to

retrieve the resource file (fork file) for an image.

NO_SIZE_CAP

Do not limit the size of an image returned by the media server.

This constant is used by the MediaConnection requestImage

method (page 55).

NewsEdge Java API Guide

Page 52 of 152

ORIGINAL_DPI

Use an image's original dots-per-inch resolution, instead of

specifying a custom one. This constant is used by the

MediaConnection requestImage method (page 55).

PREDEFINED_GEOMETRY

Use an image's own default geometry (in place of a geometry

string like “400x300”). This constant is used by the

MediaConnection requestImage method (page 55).

MediaConnection Class

Synopsis

MediaConnection connection = new MediaConnection(hostName);

connection.requestImage(key);

MediaData image = connection.readImageResponse();

Notes

The MediaConnection class represents a persistent connection

to the media server. It inherits constants from the

MediaCommConstants interface (page 50).

Normally, the client application should read media objects

from the media server using a gari.news.ResourceID (page

116), a string key, which may be a string version of a resource

ID, or a media object file name (see getName page 58). Note

that each media item has its own resourceID.

Constructors

MediaConnection (String hostName)

throws MediaException, java.io.IOException

MediaConnection (String hostName, gari.net.ProxyData)

throws MediaException, java.io.IOException

NewsEdge Java API Guide

Page 53 of 152

MediaConnection (java.net.InetAddress address)

throws MediaException, java.io.IOException

MediaConnection (java.net.InetAddress address, gari.net.ProxyData)

throws MediaException, java.io.IOException

The constructor opens a connection to the media server.

You can specify the media server by host name (as a string), or

by IP address (using a java.net.InetAddress object). You can

also include optional proxy data (see “ProxyData Class,” page

77 for more information).

The constructor throws a MediaException or IOException if

there is trouble connecting.

Use the isConnected method (page 57) to verify the

connection.

Methods

void close ()

throws java.io.IOException

Close the connection to the media server. Client applications

should invoke this method when they are finished with the

connection.

Throws a java.io.IOException if there is a network error

closing the connection.

int getTimeout ()

void setTimeout (int timeout)

Accessor and setter for the timeout property.

If the timeout is “0” (the default), the library will block

indefinitely, waiting for a response from the media server. If

the timeout is greater than “0”, the library will wait for timeout

NewsEdge Java API Guide

Page 54 of 152

milliseconds for a response, then throw a MediaException () if

none is received.

void requestFilename (gari.news.ResourceID resourceID)

throws java.io.IOException

void requestFilename (String key)

throws java.io.IOException

Request the media server to send the filename of an image.

This is the file name under which it should be saved to disk.

The XML metadata accompanying the news story will contain

the filename or resourceID of the associated image (see the

delivery format guides for more information).

Use the readFilenameResponse method (page 56) to get the

filename.

The resourceID is a gari.news.ResourceID object used as a

unique identifier for media items. Each media item has its own

resourceID.

The key is either a string version of a resource id or the

filename of a media object.

The filename is also returned as part of the MediaData object

(see requestImage, page 55 and readImageResponse, page

57), so normally client applications do not need to call one of

these methods separately.

Both methods throw an IOException if there is an error

reading the filename.

void requestIPTC (String key)

throws java.io.IOException

Request the IPTC profile for an image (see “IPTCProfile

Class,” page 61) for information on IPTC extended image

metadata).

NewsEdge Java API Guide

Page 55 of 152

Use the readIPTCResponse method (page 56) to read the

IPTC profile.

The key is either a string version of a resource id or the

filename of a media object.

Throws an IOException if there is an error reading the profile.

byte [] requestImage (String key, int resolution)

throws java.io.IOException

byte [] requestImage (String key, int resolution, String geometry,

int dpi, int maxsize)

throws java.io.IOException

Send a request for an image to the media server. Use the

readImageResponse (page 57) method to read the image as a

MediaData object.

The first version is for use with anything but

MEDIAD_CUSTOM_RES as the resolution argument. The

second version allows the client application to supply custom

resolution information.

The return value is always null. The client application should

ignore it.

The key parameter is either a string version of a resource id or

the filename of a media object.

The resolution parameter is one of the MEDIAD_*_RES

constants or the MEDIAD_ASSOCIATED constant from the

MediaCommConstants interface (page 50).

The geometry parameter is a string describing the image size,

in the format widthxheight (e.g., “400x300” for 400 pixels wide

and 300 pixels high). It is used only if the resolution is

MEDIAD_CUSTOM_RES. (Note that you can also use the

MediaCommConstants constant PREDEFINED_GEOMETRY

to use the image's existing geometry.

PREDEFINED_GEOMETRY, page 52, is the default.)

NewsEdge Java API Guide

Page 56 of 152

The dpi parameter is the image resolution in dots per inch,

typically, 72 for onscreen/web display, or 300+ for print. This

value is used only if the resolution is

MEDIAD_CUSTOM_RES. (Note that you can also use the

MediaCommConstants constant ORIGINAL_DPI to use the

image's existing dpi. ORIGINAL_DPI, page 52, is the default.)

The maxsize parameter is the maximum size of the returned

image, in octets (bytes). This value is used only if the

resolution is MEDIAD_CUSTOM_RES. (Note that you can

also use the MediaCommConstants constant NO_SIZE_CAP

to avoid any restriction on the size of the returned image.

NO_SIZE_CAP, page 51, is the default.)

gari.media.iptc.IPTCProfile readIPTCResponse ()

throws MediaException, gari.media.iptc.IPTCParseException, java.io.IOException

Returns the IPTC metadata profile for an image (see

“IPTCProfile Class,” page 61 for more information).

The application must use the requestIPTC method (page 54)

first to request the profile from the media server.

The method throws an IOException if there is a networking

error, a MediaException if there is an error in the message

format, or an IPTCParseException if there is an error in the

IPTC profile data itself.

String readFilenameResponse ()

throws MediaException, java.io.IOException

Returns the recommended file name for an image. The

application client must use the requestFilename method (page

54) first to request the filename from the media server.

The filename is also contained in the MediaData object

returned by readImageResponse (page 57), so the client does

not have to request it separately.

NewsEdge Java API Guide

Page 57 of 152

The method throws an IOException if there is a networking

error, or a MediaException if there is an error in the data

returned by the media server.

MediaData readImageResponse ()

throws MediaException , java.io.IOException

Returns a MediaData object (page 57) containing the raw data

and other information about an image.

The application must use one of the requestImage methods

(page 55) first to request the image from the media server.

The method throws an IOException if there is a network error,

or a MediaException if there is an error in the data returned

by the media server.

boolean isConnected ()

Return true if this is an active connection to a media server.

gari.net.ProxyData getProxyData ()

Get the proxy data being used to connect to the media server,

or null if none was supplied.

boolean isUsingProxyData ()

Return true if the library is connecting to the media server

through a proxy (i.e., if a gari.net.ProxyData object was

supplied to a constructor). See also “ProxyData Class,” page

77.

MediaData Class

Synopsis

MediaData image = connection.readImageResponse();

String mimeType = image.getMimeType();

byte rawData[] = image.getData();

NewsEdge Java API Guide

Page 58 of 152

Notes

This class defines an object containing raw image byte data,

together with some basic metadata (such as the size and MIME

type).

Also see the MediaConnection requestImage (page 55) and

readImageResponse (page 57) methods. Other metadata is

available through the gari.media.iptc.IPTCProfile class (page

61).

Constructors

Client applications should not construct MediaData objects

directly. The MediaConnection readImageResponse method

(page 57) generates these objects for the client application.

Methods

String getName ()

Return the recommended file name for the image. The

XMLNews story can reference the image either by filename or

resourceID.

See also the MediaConnection requestFilename (page 54) and

readFilenameResponse (page 56) methods.

String getMimeType ()

Get the MIME type of the image, such as “image/jpeg”.

The mime type is a code describing the file format from a list

maintained by the Internet Assigned Numbers Authority

(IANA), such as “image/jpeg” or “application/xhtml+xml” (see

http://www.iana.org/assignments/media-types/).

long getSize ()

Get the size of the image in bytes (octets).

http://www.iana.org/assignments/media-types/)

NewsEdge Java API Guide

Page 59 of 152

int getResolution ()

Get the resolution of the image.

The result will be one of the MEDIAD_*_RES constants or the

MEDIAD_ASSOCIATED constant from the

MediaCommConstants interface (page 50).

byte [] getData ()

Get the raw byte data for the image.

The client application can create an Image object using the

byte data.

MediaException Exception

Some of the methods and constructors in this package throw a

Media Exception when there is an error in the messages

passed back and forth to the media server.

Constructors

Client applications do not need to construct instances of this

exception themselves. It is thrown by the NewsEdge library.

Methods

This class inherits its methods from java.lang.Exception.

gari.media.iptc Package

The gari.media.iptc package handles advanced image

metadata as defined by the International Press

Telecommunications Council (IPTC).

NewsEdge Java API Guide

Page 60 of 152

IPTCConstants Interface

The IPTCConstants Interface provides constants for fields in

the IPTC Information Interchange Model (IIM), an image

metatdata standard.

These constants appear as an argument to the IPTCProfile

class's getField method (page 62).

See the IIM specification for the meanings of the fields

(available through http://www.iptc.org/IIM/).

Constants

IPTC_ACTIONADVISED IPTC_KEYWORDS IPTC_AUDIODURATION

 IPTC_LANGUAGEIDENTIFIER

IPTC_AUDIOOUTCUE IPTC_OBJECTATTRIBUTE

IPTC_AUDIOSAMPLINGRATE IPTC_OBJECTCYCLE

IPTC_AUDIOSAMPLINGRESOLUTION IPTC_OBJECTDATEPREVIEWDATE

IPTC_AUDIOTYPE IPTC_OBJECTDATEPREVIEWFILEFORMAT

IPTC_BYLINE IPTC_OBJECTDATEPREVIEWFILEFORMATVERSION

IPTC_BYLINETITLE IPTC_OBJECTNAME

IPTC_CAPTIONABSTRACT IPTC_OBJECTTYPE

IPTC_CATEGORY IPTC_ORIGINALTRANSMISSIONREFERENCE

IPTC_CITY IPTC_ORIGINATINGPROGRAM

IPTC_CONTACT IPTC_PROGRAMVERSION

IPTC_CONTENTLOCATIONCODE IPTC_PROVINCESTATE

IPTC_CONTENTLOCATIONNAME IPTC_RASTERIZEDCAPTION

IPTC_COPYRIGHTNOTICE IPTC_RECORDVERSION

IPTC_COUNTRYCODE IPTC_REFERENCEDATE

IPTC_COUNTRYNAME IPTC_REFERENCENUMBER

IPTC_CREDIT IPTC_REFERENCESERVICE

IPTC_DATECREATED IPTC_RELEASEDATE

IPTC_DIGITALCREATIONDATE IPTC_RELEASETIME

http://www.iptc.org/IIM/)

NewsEdge Java API Guide

Page 61 of 152

IPTC_DIGITALCREATIONTIME IPTC_SOURCE

IPTC_EDITORIALUPDATE IPTC_SPECIALINSTRUCTIONS

IPTC_EDITSTATUS IPTC_SUBJECTREFERENCE

IPTC_EXPIRATIONDATE IPTC_SUBLOCATION

IPTC_EXPIRATIONTIME IPTC_SUPPLEMENTALCATEGORY

IPTC_FIXTUREIDENTIFIER IPTC_TIMECREATED

IPTC_HEADLINE IPTC_URGENCY

IPTC_IMAGEORIENTATION IPTC_WRITEREDITOR

IPTC_IMAGETYPE

IPTCProfile Class

This class represents the IPTC IIM metadata profile for an

image and includes advanced metadata. The client application

obtains a copy through the gari.media.MediaConnection’s

requestIPTC (page 54) and readIPTCResponse (page 56)

methods.

This class implements the IPTCConstants (page 60), so all of

the IIM constants are available through it as well.

Constructors

IPTCProfile (byte [] profile)

throws IPTCParseException

Construct a new profile object from the raw bytes of an image’s

IIM section. Normally, client applications do not need to use

this constructor, since the library builds the IPTCProfile object

for them.

This method throws an IPTCParseException if there is an

error parsing the raw byte data.

NewsEdge Java API Guide

Page 62 of 152

Methods

byte [] getProfile ()

Get the raw byte data for the profile.

Object getField (int id)

Get the value of an IIM field.

The id parameter is one of the constants defined in the

IPTCConstants interface (page 60).

The method returns the value of the field in the IPTC profile

(numbers will be wrapped as Java objects). There are also

convenience methods for each field type (see below).

String getFieldName (int id)

Get the name for an IIM field.

The id parameter is one of the constants defined in the

IPTCConstants interface (page 60).

The return value is the display name of the field.

short getRecordVersion()

Get the version number of the IPTC IIM in use.

The return value is a short integer.

int getUrgency()

Get the editorial urgency for the object.

The return value is an integer. 1 = most, 5 = normal, 8 = least.

String[] getObjectAttribute()

Get a news code specifying the type of object (for example,

forecast, obituary, press release, and so on).

The return value is an array of zero or more strings, each

containing a code from a list the IPTC maintains.

NewsEdge Java API Guide

Page 63 of 152

String[] getSupplementalCategory()

Get additional category information from a list maintained by

the provider (also see getCategory, page 66).

The return value is an array of zero or more strings, each

containing a code for one supplemental category.

String[] getKeywords()

Get keywords associated with the object (for search

optimization).

The return value is an array of zero or more strings, each

containing one keyword.

String[] getContentLocationCode()

Get 3-character codes for the country/geographical locations

associated with the object.

The return value is an array of zero or more ISO 3166 three-

letter country codes.

String[] getContentLocatonName()

Get the names of the countries and other locations associated

with the object.

The return value is an array of zero or more location names.

String[] getReferenceService()

Get the service identifiers (provider and product) of any prior

envelopes to which the current object refers.

The return value is an array of zero or more service identifiers.

Each service has an associated date and number (see

getReferenceDate, page 64, and getReferenceNumber, page

64).

NewsEdge Java API Guide

Page 64 of 152

String[] getReferenceDate()

Get the dates of any prior envelopes to which the current

object refers. The dates are associated with specific services in

the IIM header (see getReferenceService, page 63), but the

API does not currently preserve the associations.

The return value is an array of zero or more date strings.

String[] getReferenceNumber()

Get the envelope numbers of any prior envelopes to which the

current object refers. The numbers are associated with specific

services in the IIM header (see getReferenceService, page 63),

but the API does not currently preserve the associations.

The return value is an array of zero or more strings, each

containing a reference number.

String[] getByline()

Get the names of the people or organizations who created the

object.

The return value is an array of zero or more strings, each

containing a name.

String[] getBylineTitle()

Get the professional titles of the people or organizations who

created the object. The titles are associated with specific

bylines in the IIM header (see getByline, above), but the API

does not currently preserve the associations.

The return value is an array of zero or more strings, each

either empty or containing a person’s title, such as “staff

photographer”, “correspondent,” and so on.

String[] getContact()

Get the contact information for people who can provide more

information about the object.

NewsEdge Java API Guide

Page 65 of 152

The return value is an array of zero or more strings, each

containing a person’s name and contact information.

String[] getWriterEditor()

Get the names of the people who wrote/edited the object.

The return value is an array of strings, each containing a

person’s name.

String getObjectType()

Get a constant specifying the general object type (news, data,

or advisory).

The return value is one of 01:News, 02:Data or 03:Advisory.

String getObjectName()

Get the shorthand descriptive name, or slug, of the object.

The return value is text that identifies the object (example,

“Ferry sinks”).

String getEditStatus()

Get the editorial status of the object (for example, correction,

and so on).

The return value is a string specifying the status of the object,

as defined by the provider.

String getEditorialUpdate()

Get the new editorial status of the object, in relation to a

previous instantiation of it.

The return value is a two-character numeric string containing

a code specifying the update type. The only update type

defined in the IIM specification is “01”, indicating that the

object repeats information from an associated object in a

different language.

NewsEdge Java API Guide

Page 66 of 152

String getCategory()

Get the top-level subject code for the object.

The return value is a string containing a code from a list

maintained by the provider.

String getFixtureIdentifier()

Get information about an object that recurs often and

predictably.

The return value is a string such as “Weather Forecast”, as

defined by the provider.

String getReleaseDate()

Get the earliest date on which the object can be released (also

called the embargo date).

The return value is a string containing a date in CCYYMMDD

format (following the ISO 8601 standard). For example,

"19890317" indicates data for release on March 17, 1989.

String getReleaseTime()

Get the earliest time at which the object can be released.

The return value is a string containing a time in

HHMMSS±HHMM format (following the ISO 8601 standard).

For example, "090000-0500" indicates object for use after 0900

in New York (five hours behind UTC) when daylight saving

time is not in effect.

String getExpirationDate()

Get the date on which the object is no longer valid.

The return value is a string containing a date in CCYYMMDD

format (following the ISO 8601 standard). For example,

"19890317" indicates that the object should not be used after

March 17, 1989.

NewsEdge Java API Guide

Page 67 of 152

String getExpirationTime()

Get the time at which the object is no longer valid.

The return value is a string containing a time in

HHMMSS±HHMM format (following the ISO 8601 standard).

For example, "090000-0500" indicates an object that should not

be used after 0900 in New York (five hours behind UTC).

String getSpecialInstructions()

Get other editorial information about the object such as

embargoes and warnings.

The return value is text such as “second of four stories”.

String getActionAdvised()

Get the type of action that the receiver should apply to the

previous version of the same object.

The return value is a two-character numeric string containing

a code from the following list:

01: Object kill (cease using this object)

02: Object replace (replace the previous version with this

one)

03: Object append (add this one to the end of the previous

version)

04: Object reference (cross-reference this object to a

different, associated one)

String getDateCreated()

Get the date on which the intellectual content of the object was

created.

The return value is a string containing a date in the form

CCYYMMDD (following the ISO 8601 standard). Where the

month or day cannot be determined, the information will be

represented by “00”. Where the year cannot be determined,

the information for century and year will be represented by

NewsEdge Java API Guide

Page 68 of 152

“00”. For example, "19900127" indicates the intellectual content

created on January 27, 1990.

String getTimeCreated()

Get the time at which the intellectual content of the object was

created.

The return value is a string containing the time in

HHMMSS±HHMM format (following the ISO 8601 standard).

For example, "133015+0100" indicates that the object

intellectual content was created at 1:30 p.m. and 15 seconds

Frankfurt time, one hour ahead of UTC.

String getDigitalCreationDate()

Get the date on which the digital copy of the object was

created.

The return value is a string containing a date in CCYYMMDD

format (following the ISO 8601 standard). For example,

"19890317" indicates that the digital form of the object was

created on March 17, 1989.

String getDigitialCreationTime()

Get the time at which the digital copy of the object was

created.

The return value is a string containing the time in

HHMMSS±HHMM format (following the ISO 8601 standard).

For example, "133015+0100" indicates that the digital form of

the object was created at 1:30 p.m. and 15 seconds Frankfurt

time, one hour ahead of UTC.

String getOriginalProgram()

Get the name of the software application originally used to

create the object.

The return value is the name of the originating application,

such as “Word Perfect,” “FrameMaker,” and so on.

NewsEdge Java API Guide

Page 69 of 152

String getProgramVersion()

Get the version of the software application originally used to

create the object.

The return value is the version number of the program

returned by the getOriginalProgram method, above.

String getObjectCycle()

Get the object target news cycle(s) for the object.

The return value is one of morning (“a”), evening (“p”) or

both (“b”). It is used mainly in North America.

String getCity()

Get the name of the city from which the object originated.

The return value is the name of the city (e.g., “London”).

String getSubLocation()

Get a sub-location (such as a neighborhood in a city) from

which the object originated.

The return value is the name of the sub-location (e.g., “Soho”).

String getProvinceState()

Get the name of the province or state from which the object

originated.

The return value is the name of the province or state (e.g.,

“New Jersey”).

String getCountryCode()

Get the country code for the country from which the object

originated.

The return value is the country code in ISO 3166 format. Note

that this method returns the three-character version of the ISO

country code, not the two-character version commonly used

on the Internet.

NewsEdge Java API Guide

Page 70 of 152

String getCountryName()

Get the name of the country from which the object originated.

The return value is the name of the country corresponding to

the code returned by the getCountryCode method, above.

String getOriginalTransmissionReference()

Get information about from where the object was transmitted.

The return value is a string, from a list the provider maintains.

String getHeadline()

Get the headline for the object.

The return value is a string describing the story.

String getCredit()

Get the provider name for the object (not necessarily the

owner or creator).

The return value is the name of the provider.

String getSource()

Get the original creator/owner of the object.

The return value is the name of the creator/owner of the object.

This could be an agency, a member of an agency or an

individual.

String getCopyrightNotice()

Get the copyright notice for the object.

The return value is the copyright notice.

String getCaptionAbstract()

Get the text description of the object.

The return value is a text description of the object. This is used

particularly where the object is not text.

NewsEdge Java API Guide

Page 71 of 152

String getRasterizedCaption()

Get the rasterized version of the caption for the object.

The return value is the rasterized objectdata description (in

other words, a picture of the caption text). It is used where

characters that have not been coded are required for the

caption.

String getImageType()

Get the code for a type of image.

The return value is a numeric and alphabetic character. The

numeric characters 1 to 4 indicate the number of components

in an image, in single or multiple envelopes. The numeric

character 0 indicates no object data. The numeric character 9

specifies that the objectdata contains supplementary data to an

image.

0 = no object data

'1' = Single component (e.g., black and white or one

component) of a colour project.

'2', '3', '4' = Multiple components for a colour project.

'9' = Supplemental objects related to other objectdata

The alphabetic character will indicate the exact content of the

current objectdata in terms of colour composition:

'W' = Monochrome

'Y' = Yellow component

'M' = Magenta component

'C' = Cyan component

'K' = Black component

'R' = Red component

'G' = Green component

NewsEdge Java API Guide

Page 72 of 152

'B' = Blue component

'T' = Text only

'F' = Full color composite, frame sequential

'L' = Full color composite, line sequential

'P' = Full color composite, pixel sequential

'S' = Full color composite, special interleaving

String getImageOrientation()

Get information about the layout of the image.

The return value is landscape (l), portrait (p) or square (s).

String getLanguageIdentifier()

Get the language associated with the object.

The return value is a two-letter code that identifies the

language (without a country suffix) associated with the object

in ISO 639:1988 format. In the future, the IIM may use three-

letter language codes.

String getAudioType()

Get the type of audio associated with the object (stereo, mono).

The return value is a numeric and an alphabetic character.

Values for the numeric character include the following:

0 = no objectdata

1 = mono

2 = stereo

Values for the second, alphabetic character include the

following:

'A' = Actuality

NewsEdge Java API Guide

Page 73 of 152

'C' = Question and answer session

'M'= Music, transmitted by itself

'Q' = Response to a question

'R' = Raw sound

'S' = Scener

‘T’ = Text only

'V' = Voicer

'W' = Wrap

String getAudioSamplingRate()

Get the rate at which the audio was sampled, in Hertz.

The return value is a string containing the sampling rate, with

leading zeroes. For example, "011025" indicates a sample rate

of 11025 Hz and "022050" indicates a sample rate of 22050 Hz.

String getAudioSamplingResolution()

Get the number of bits in each audio sample.

The return value is a string specifying the sampling resolution,

as in the following:

"08" for a sample size of 8 bits

"16" for a sample size of 16 bits

String getAudioDuration()

Get the length of time the audio sample runs.

The return value is a string containing a time in HHMMSS

format. It indicates the running time of an audio object when

played back at the speed at which it was recorded. For

example, "000105" indicates a cut lasting one minute, five

seconds.

NewsEdge Java API Guide

Page 74 of 152

String getAudioCue()

Get the out-cue information for an audio object, specifying the

text or action at the end of an audio clip.

The return value is the end of the audio object, such as "...

better as a team" or "fades".

String getObjectPreviewFileFormat()

Get information about the file format of the object preview.

The return value is the file format. The file format must be

registered with IPTC or NAA with a unique number assigned

to it.

String getObjectPreviewFileFormatVersion()

Get the version number of the file format used for the object

preview.

The return value is a string representing the version of the

specified by the get ObjectPreviewFileFormat method.

byte[] getObjectDataPreviewData()

Get the preview data for the object.

The return value is a byte array containing the binary preview

data.

Constants

This class inherits all the constants in the IPTCConstants

interface (page 60).

IPTCParseException

Some methods in the gari.media and gari.media.iptc packages

throw this exception when there is an error parsing an IPTC

IIM section.

NewsEdge Java API Guide

Page 75 of 152

Methods

IPTCParseException inherits the methods from

java.lang.Exception.

gari.net Package

The gari.net package contains the lower-level networking

support (messaging layer) for the NewsEdge Java API. For

information on how this package fits into the overall

networking architecture, see “Architectural Overview” (page

139).

QuipEventListener Interface

Synopsis

class MyListener implements QuipEventListener

{

public void QuipEventNotification (QuipEvent event)

{

System.err.println("Network event: " +

event.getMessage());

}

}

Notes

The client application creates a class implementing this

interface, then registers the object through the QuipClient

addQuipEventListener method (page 80), inherited by

gari.inap.InapClient).

The listener object receives notification of connection events

through its QuipEventNotification method. This information

is encapsulated in the QuipEvent object (page 81).

NewsEdge Java API Guide

Page 76 of 152

One connection can have multiple listeners (for example, one

for logging, one for the console, and so on).

Methods

void QuipEventNotification (QuipEvent event)

The library invokes this method every time a significant event

occurs in the network connection. See “QuipEvent Class,”

page 81 for details.

Channel Class

This is an ancestor class of gari.news.NewsChannel (page

102) and provides some of its methods.

Constructors

The client application never creates this class directly.

Methods

QuipClient getQuipClient ()

Get a reference to the underlying QuipClient (superclass of

the InapClient). It is useful for adding a network event

listener (see “QuipEvent Class,” page 81).

short getPort ()

Get the server port this channel uses. This value will be one of

the *_SERVICE constants listed below. The constant can also

be passed to the gari.inap.InapClient constructor (page 46).

QuipBuffer receive ()

throws java.io.IOException, TimeoutException

Receive a message from the server through this channel. The

QuipBuffer object is opaque to the client application. It simply

NewsEdge Java API Guide

Page 77 of 152

passes on to methods or constructors in other classes (see, for

example, HeadlineAnswer Class on page 89).

Throws a java.io.IOException, if there is a network error, and

a TimeoutException if there is a connection timeout.

Constants

The following are constants for different TCP ports used on

the News Server:

ADMIN_SERVICE – for internal use in the library (6963)

HTTP_SERVICE - uses the standard HTTP port 80

HTTPS_SERVICE - uses the standard TLS/SSL port 443

NEWS_SERVICE – uses port 6973

QUOTES_SERVICE - uses port 6983

STARTUP_SERVICE – uses port 6973

ProxyData Class

Synopsis

ProxyData proxy = new ProxyData(proxyHost, proxyPort);

InapClient client = new InapClient(newsHost, login, proxy);

Notes

The ProxyData class provides information about a network

proxy. It is supplied to the InapClient object when

establishing a connection, if the client application is behind a

proxy. For Java applets running on client machines, where the

proxy settings (if any) are not known in advance, see the

detectProxy Class (page 129).

NewsEdge Java API Guide

Page 78 of 152

Constructors

ProxyData ()

Creates an empty object. You must use the set* methods (page

78) to configure it.

ProxyData (String host, String port)

Use if the proxy does not require authentication.

ProxyData (String host, String port, String username, String password)

Use if the proxy requires authentication.

The host parameter is the hostname/IP address of the proxy.

The port is the TCP port number of the proxy, represented as a

string. The username parameter is the account name for

logging into the proxy, if the proxy requires authentication.

The password parameter is the password for logging into the

proxy, if the proxy requires authentication.

Methods

void setProxyHost (String host)

String getProxyHost ()

Accessor and setter for the proxy host address.

void setProxyPort (String port)

String getProxyPort ()

Accessor and setter for the proxy TCP port.

void setProxyUsername (String username)

String getProxyUsername ()

Accessor and setter for the username to authenticate with the
proxy (if required).

NewsEdge Java API Guide

Page 79 of 152

void setProxyPassword (String password)

String getProxyPassword ()

Accessor and setter for the password to authenticate with the

proxy (if required).

QuipBuffer Class

The QuipBuffer class represents a message passed to or from

the NewsEdge News Server.

Client applications should never attempt to work with the

class directly but may pass it as an argument to other

methods and constructors: they should treat it as a black box.

See, for example, the gari.news.ProfileGroup constructor,

which takes a QuipBuffer as its argument (page 108). The

client application normally obtains a QuipBuffer through the

gari.news.NewsChannel receive method inherited from

gari.net Channel (page 76).

QuipClient Class

The QuipClient class is the base class for gari.inap.InapClient

(page 46), which represents a higher layer in the network

stack.

Constructors

The client application always works through the InapClient

object, so it does not need to construct QuipClient objects

directly.

Methods

boolean isConnected ()

Return true if there is currently a connection to the news

server.

NewsEdge Java API Guide

Page 80 of 152

java.net.InetAddress getServerAddress ()

Return the IP address of the News Server.

short getAccountNumber ()

Return the current user's account number.

ProxyData getProxyData ()

Get the proxy data in use for connecting to the server

(ProxyData Class, page 77).

boolean isUsingProxy ()

Return true if the library is currently connecting to the news

server through a proxy.

void close ()

Explicitly close the connection to the server. The connection

does close automatically after it is not in use for a while, or

when the same user attempts to open a new connection.

However, it is a good idea to use this method when the

application terminates or when the connection is no longer

required.

void addQuipEventListener (QuipEventListener listener)

Add a listener object to receive notification of connection

events. For more information, see QuipEventListener

Interface (page 75), QuipEvent Class (page 81) and “How to

Monitor the Connection's Health” (page 24).

void removeQuipEventListener (QuipEventListener listener)

Remove one of the listeners attached to the connection.

QuipEventListener [] getQuipEventListeners ()

Get an array of all the listeners currently attached to the

connection. If there are no listeners, this method returns an

empty array, not null.

NewsEdge Java API Guide

Page 81 of 152

QuipEvent Class

Synopsis

class MyListener implements QuipEventListener

{

public void QuipEventNotification (QuipEvent event)

{

System.err.println("Network event: " +

event.getMessage());

}

}

Notes

The QuipEvent class defines the object passed to listeners (see

the QuipEventListener Interface, page 75) to describe the

status of the network connection. The object provides

information that the client application can use for monitoring

logging, notification, and other administrative tasks.

Constructors

Client applications do not need to create QuipEvent objects

because the library creates them and passes them to

QuipEventListener Interface.

Methods

int getType ()

Get an integer constant describing the event type. This method

rreturns one of the constants described below (page 82).

int getAccountNumber ()

Get the number of the account to which the event belongs.

Also see the QuipClient getAccountNumber method (page

80).

NewsEdge Java API Guide

Page 82 of 152

Use when the same handler is monitoring multiple

connections, or to include the account number in the log.

int getMessage ()

Get a textual message describing the event.

Constants

This section describes the constants returned by the getType

method (above).

DISCONNECT

The library no longer has a connection to the server.

CONNECT

The library has established a connection to the server.

RECONNECT

The library has reestablished a connection to the server.

RECONNECT_FAILED

The library has failed to reestablish a connection to the server

and is not currently connected.

PING_FAILED

The library was unable to detect that the news server is

available and working properly.

PING_SUCCESS

The library was able to detect that the news server is available

and working properly.

DUPLICATE_LOGIN

A new connection to the news server for the same account has

caused the server to drop this connection.

NewsEdge Java API Guide

Page 83 of 152

MAX_CONNECTIONS

Cannot connect to the server because the maximum number of

server-wide connections has been reached. It is not related to

entitlements.

SYSTEM_ERROR

There has been some other kind of connection error. (For

details, see the message accompanying the system_error

constant.)

QuipException Class

Synopsis

try {

// some Quip networking operation

} catch (QuipException ex) {

System.err.println(“Networking error: “ + ex.getMessage());

}

Notes

The library throws a QuipException when there is a problem

with the network message layer between the client application

and the server.

QuipException is a subclass of java.lang.RuntimeException,

so it does not usually need to be caught in client application

code (though it is still a good idea to do so).

Constructors

Client applications do not need to construct QuipException

objects.

NewsEdge Java API Guide

Page 84 of 152

Methods

The class uses standard methods inherited from

java.lang.Exception.

TimeoutException Class

Synopsis

try {

// some Quip networking operation

} catch (TimeoutException ex) {

System.err.println(“Networking timeout: “ + ex.getMessage());

}

Notes

The library throws a TimeoutException when a network

operation times out.

TimeoutException is a subclass of java.io.IOException. Many

operations also throw an IOException, so catching that can

catch timeout exceptions as well. Catch this explicitly when

you want to deal with timeouts differently from other I/O

problems.

Constructors

Client applications do not need to construct

TimeoutException objects.

Methods

This class uses standard methods inherited from

java.lang.Exception.

NewsEdge Java API Guide

Page 85 of 152

gari.news Package

The gari.news package represents the main application layer

in the NewsEdge Java library. Your client application will do

most of its work in this package.

Headline Class

Synopsis

ExtendedEnumeration headlines =

headlineAnswer.getElements();

while (headlines.hasMoreElements()) {

Headline headline = (Headline)headlines.nextElement();

ResourceID resourceId = headline.getResourceID();

String headlineText = headline.getText();

String storySummary = headline.getSummary();

// etc.

}

Notes

The Headline class contains metadata and access information

for a single story. It is one of the most important classes for

working with the NewsEdge Java API, since it provides the

ResourceID, required to look up the entire text of stories.

The Headline object can result from either a history search or

a set of newly-arrived real-time stories (see “Task 4: Retrieving

the Full Text of an Article,” page 15, and “How to List the

Available Wires,” page 41).

Constructors

There are no constructors for this class. Obtain Headline

objects through a HistorySearch (page 95) or Profile (page

103) object.

NewsEdge Java API Guide

Page 86 of 152

Methods

ResourceID getResourceID ()

Get the resource identifier for the story. The resource identifier

includes information about the date, time, provider, service,

and so on (see “ResourceID Class,” page 116).

String getText ()

Get the text of the headline. This text is the display text (for a

summary list, and so on), which may be shorter than the entire

headline included in the story.

The following is an example: “CREW Requests Investigation

into Rep. Doc Hastings and Top Aide”.

String getSummary ()

Get a short text summary of the story. The summary text is

appropriate for displaying in a list of news stories, search

results, table of contents, and so on.

The following is an example of a summary:

WHAT: ADDICTION, the centrepiece feature

documentary of HBO's groundbreaking, multi-

platform campaign, brings together the nation's

leading experts on drug and alcohol addiction with

a collection of award-winning filmmakers to shed

light on addiction, its causes and the latest and most

promising developments in treatments. SOURCE

HBO.

boolean isHot ()

This is a convenience method that returns true if the story

includes the Dow Jones code “N/HOT”. To detect the impact

rating of stories from all wires and not just Dow Jones, see

getImpactRating, page 88.

NewsEdge Java API Guide

Page 87 of 152

This method is not a general solution for detecting “hot” or

breaking stories. For information on how to detect such

stories, see getCodes, below.

String getSymbols ()

Returns a semicolon-separated list of stock ticker symbols for

companies associated with the story, as in the following

example: “Toronto:SJR.B;NYSE:SJR”

Each symbol contains an exchange abbreviation and ticker

symbol, separated by a colon, as in the following example:

“NYSE:SJR”. “NYSE” is the exchange, and “SJR” is the ticker

symbol.

You can separate the results into an array using the

java.lang.String split method:

String symbolString = headline.getSymbols();
String symbols[] = symbolString.split(";");

String getCodes ()

Returns a semicolon-separated list of subject codes associated

with the story, as in the following example:

“IC/comp.soft;IC/comp;NI/Computer_Systems;NI/Software”.

(The list is generally much longer.)

Each code contains a vocabulary identifier and a value,

separated by a forward slash. In the example, “IC/comp” the

vocabulary identifier is “IC” (industry code) and the value is

“comp” (computers).

You can separate the results into an array using the

java.lang.String split method:

String codeString = headline.getCodes();
String codes[] = codeString.split(";");

See also isHot (page 86) and getImpactRating (page 88).

NewsEdge Java API Guide

Page 88 of 152

int getType ()

Get a constant for the status of the story from the library’s

perspective. For a description of the constants

HISTORY_HIT, PROFILE_MATCH, and PROFILE_MISS,

see “Constants” (page 88). Note that the client application

does not normally see the PROFILE_MISS constant. Users

would see this constant if they created a Profile and passed

true to the setShowAll method (see the setShowAll method,

page 105). Any profile with the ShowAll property set to true

will have all headlines sent. Headlines that ‘hit’ the profile

will be of type PROFILE_MATCH, all others will be

PROFILE_MISS.

This method has limited use for client applications.

boolean getIsUpdate ()

Returns true if this is an updated version of a previous story,

or false if it is not. Always returns false for headline objects

from an historical search.

int getImpactRating ()

This is a convenience method to extract the MC/HOT# impact

rating from the code string (see getCodes, page 87). The

impact rating indicates an estimate of the importance of a

story to the audience. The result of this method is an integer

from 1 (low impact) to 9 (high impact). If the story has no

impact code assigned, the method returns a 0.

Constants

This section describes the constants returned by the getType

method (page 88).

HISTORY_HIT

Indicates that the story matched the history search pattern.

PROFILE_MATCH

Indicates that the story matched the profile search pattern.

NewsEdge Java API Guide

Page 89 of 152

PROFILE_MISS

Indicates that the story did not match the profile search

pattern (client applications should not normally see this

value). Users would see this constant if they created a Profile

and passed true to the setShowAll method (page 105). Any

profile with this set to true will have all headlines sent.

Headlines that ‘hit’ the profile will be of type

PROFILE_MATCH, all others will be PROFILE_MISS.

HeadlineAnswer Class

Synopsis #1: After a history search

search.doReadHeadlines(channel);

HeadlineAnswer answer = new

HeadlineAnswer(channel.receive());

ExtendedEnumeration headlines = answer.getElements();

while (headlines.hasMoreElements()) {

Headline headline = (Headline)headlines.nextElement();

// process the Headline

}

Synopsis #2: In a real-time news observer

public void update (Observable observable, Object object)

{

ProfileHeadlines ph = (ProfileHeadlines)object;

HeadlineAnswer answer = ph.getHeadlines();

ExtendedEnumeration headlines = answer.getElements();

while (headlines.hasMoreElements()) {

Headline headline =

(Headline)headlines.nextElement();

// process the Headline

}

}

Notes

The HeadlineAnswer class represents the result of an

historical query or a packet of newly-arrived stories. For an

NewsEdge Java API Guide

Page 90 of 152

historical search, the client application must create this object

itself.

The client application uses the HeadlineAnswer class to

obtain an ExtendedEnumeration object (page 128) that allows

the application to iterate through the headlines, each of which

contains metadata and access information for a single story.

For more information, see Headline (page 85).

Constructors

HeadlineAnswer (gari.net.QuipBuffer buffer)

Create a new HeadlineAnswer object from a message buffer.

Normally, create the message buffer using the NewsChannel

receive method (page 76), after invoking the HistorySearch

doReadHeadlines method (page 94).

Note that it is not necessary to use this approach to obtain

real-time profiles. The library constructs the object for you (see

the second synopsis above).

Methods

gari.util.ExtendedEnumeration getElements ();

Get an enumeration object for stepping through the Headline

objects (page 85).

HeadlineContext Class

Synopsis

// process 20 pages of headlines

for (int x = 0; x < 20; x++) {

HeadlineAnswer answer = new

HeadlineAnswer(channel.receive());

// process the headlines

HeadlineContext.nextHeadlines(channel);

}

NewsEdge Java API Guide

Page 91 of 152

Notes

The HeadlineContext class provides static methods to page

backwards or forwards through search results. The method

moves the pointer to the results that will be returned to the

next HeadlineAnswer object.

The context is specific to the NewsChannel (page 102).

Multiple NewsChannel objects can maintain their own

pointers.

Constructors

Client applications should not instantiate this class, since it has

only static methods.

Methods

All these methods work only after the HistorySearch

doReadHeadlines method has been called on the channel (see

page 94). Calling doReadHeadlines affects which headlines

the next HeadlineAnswer object will return.

Note that you must use the HistorySearch setMaxHits (page

97) and setGetExactHitCount (page 97) methods to determine

the page sizes.

static void nextHeadlines (NewsChannel channel)

throws java.io.IOException

Page forward so that the next HeadlineAnswer object created

will receive a new page of search results.

Throws a java.io.IOException if there is a networking error.

static void prevHeadlines (NewsChannel channel)

throws java.io.IOException

NewsEdge Java API Guide

Page 92 of 152

Page backward so that the next HeadlineAnswer object will

receive a previous page of search results (one that the

application has already received and moved past).

Throws a java.io.IOException if there is a networking error.

static void currentHeadlines (NewsChannel channel)

throws java.io.IOException

Move back to the initial page of top search results (the ones

received by the first HeadlineAnswer object), before invoking

any of the methods in this class).

Throws a java.io.IOException if there is a networking error.

static void requestHeadlinePage (NewsChannel channel, int pageNumber)

throws java.io.IOException

Move to a specific page of search results, using a zero-based

index for the first results to be returned.

Note that this method works only for pages that have already

been received. You cannot use it to move forward to new

pages.

Throws a java.io.IOException if there is a networking error.

HistoryCacheSearch Class

Synopsis

HistoryCacheSearch search = new HistoryCacheSearch(client, "msft

ibm");

search.setCacheType(HistoryCacheSearch.CACHE_UPDN);

HeadlineAnswer answer = new

HeadlineAnswer(search.doReadHeadlines());

NewsEdge Java API Guide

Page 93 of 152

Notes

The HistoryCacheSearch class requests items from cache,

through a ticker symbol or subject code (see the getCodes and

getSymbols methods, page 87).

The class connects to a separate server that caches stories

matching pre-defined queries. Searches can include only

symbols or topic codes that are defined at server startup.

Note that the HistoryCacheSearch class is available only on

some accounts, as an optional extra feature, by special

arrangement with NewsEdge Customer Support.

Constructors

HistoryCacheSearch (gari.inap.InapClient client)

Construct a new cache search.

Note that this constructor uses InapClient directly instead of

working through a NewsChannel.

HistoryCacheSearch (gari.inap.InapClient client, String queryItems)

This is a convenience constructor and is the equivalent of

invoking setQueryItems (page 94) after creating this object.

HistoryCacheSearch (gari.inap.InapClient client, String queryItems,

int count)

This is a convenience constructor and is the equivalent of

invoking setQueryItems (page 94) and setCount (page 94)

after creating this object (the count defaults to 10 otherwise).

HistoryCacheSearch (gari.inap.InapClient client, String queryItems,

int count, int port)

This is a convenience constructor and is the equivalent of

invoking setQueryItems (page 94), setCount (page 94), and

setPort (page 94) after creating this object (the port defaults to

6973 otherwise).

NewsEdge Java API Guide

Page 94 of 152

Methods

String getCacheType ()

void setCacheType (String cacheType)

Accessor and setter for the type of cache the search will access.

Uses one of the constants CACHE_NEWS, CACHE_UPDN,

CACHE_WSOD, or CACHE_EDGAR10K (page 95).

If this value is not set, it defaults to CACHE_NEWS.

String getQueryItems ()

void setQueryItems (String queryItems)

Accessor and setter for the query items for which to search.

Returns a space-separated list of stock ticker symbols or

subject codes (e.g., “ibm msft” to find articles about IBM

and/or Microsoft).

Note that the method can search only for items that were

predefined in the cache server when it was started up.

int getCount ()

void setCount (int count)

Accessor and setter for the approximate maximum number of

items to return. The default value is 10.

int getPort ()

void setPort (int port)

Accessor and setter for the TCP port to use for the connection.

The default is 80.

String doReadHeadlines ()

Read headlines from the cache server.

Returns a buffer that can be passed to the HeadlineAnswer

constructor to create a list of Headline objects (as in the

synopsis).

NewsEdge Java API Guide

Page 95 of 152

Constants

This section describes the constants returned by the

getCacheType and setCacheType methods (page 94).

CACHE_NEWS

Search in the cache of general stories.

CACHE_UPDN

Search in the cache of Upgrades and Downgrades.

CACHE_WSOD

Search in the cache of Wall Street On Demand financial

research.

CACHE_EDGAR10K

Search in the cache of U.S. Security and Exchange Commission

EDGAR 10K filings from public companies.

HistorySearch Class

Synopsis

HistorySearch search = new HistorySearch("Manhattan");

search.doReadHeadlines(channel);

HeadlineAnswer answer = new

HeadlineAnswer(channel.receive());

ExtendedEnumeration headlines = answer.getElements();

Notes

The HistorySearch class provides methods for searching

against recent historical stories, including topic codes,

symbols, fulltext, boolean, date range, and so on.

Both this class and the Profile class (page 103) extend the

MetaHeadlineQuery class (page 99), which defines many of

the methods for this class.

NewsEdge Java API Guide

Page 96 of 152

For additional information, see “Task 2: Searching Historical

News,” page 9 and “How to Search Historical Headlines,”

page 27.

Constructors

HistorySearch ()

Construct a new search object without a query string. Note

that you must invoke the setQueryText method (page 99,

inherited from MetaHeadlineQuery) to set the query before

executing a search.

HistorySearch (String query)

Construct a new search object and set a query string.

The following table describes the pattern matching symbols:

Pattern

Description

* Match anything.

word1 word2 Match word1 or word2.

+word The specified word is required in the results.

-word The specified word is not allowed in the

results.

/symbol Searches for a stock ticker symbol (e.g.,

“/MSFT”)

NOTE: Use only the symbol. Do not include

the exchange.

“a phrase” Match the word as a phrase.

Methods

This section describes the methods defined specifically by the

HistorySearch class. See also the methods in MetaQuery

(page 101) and MetaHeadlineQuery (page 99), which are

superclasses of HistorySearch. To limit your search to specific

wires, see “How to Limit a Search by Wires,” page 31.

NewsEdge Java API Guide

Page 97 of 152

void setMaxHits (int maxHits)

Set the approximate maximum number of matches to return

for the search. To force an exact maximum, use the

setGetExactHitCount method (page 97).

For additional information on matching, see “How to Change

the Number of Search Results Returned,” page 29.

String getDateRange ()

void setDateRange (String dateRange)

Accessor and setter for the date range for the historical search.

Note that the date range is always inclusive of start and end.

Use “<YYYYMMDD” for articles published before or on a

date, “>YYYYMMDD” for articles published on or after a date,

or both combined for a range “>YYYYMMDD

<YYYYMMDD”.

You also may add time after the date in “HH:SS” format (with

a space between the date and time) to specify a time in 24-hour

format, using the U.S. eastern time zone.

For more information on specifying a date range for search

results, see “How to Limit Search Results by Date,” page 30.

void setGetExactHitCount (boolean flag)

If set to true, force the maximum number of hits to be exact

instead of approximate (at the cost of extra computation).

See setMaxHits, above.

void setHeadlineResIDOnly (boolean flag)

If set to true, return only the ResourceID for each story, with

no other metadata. Note that the setting of this method does

affect other methods. If set to true, methods that return

metadata (for example, getcodes, page 87) will not be

available.

NewsEdge Java API Guide

Page 98 of 152

boolean getHeadlineResIDOnly ()

Check if the search is returning only ResourceID objects for

each story.

See setHeadlineResIDOnly, above.

boolean getGetExactHitCount ()

Check if the search is enforcing a strict maximum number of

results.

See setGetExactHitCount, above.

void setShowChainHeadOnly (boolean flag)

If set to true, display only the headline of the first story of the

chain (different takes on the same story). This method pertains

mainly to Dow Jones.

String getName ()

void setName (String name)

Accessor and setter for a name that the client application can

use to identify this search. This method helps a client manage

multiple search objects. Only the first story of the chain is

displayed. This pertains mainly to Dow Jones (DJ).

boolean getShowChainHeadOnly ()

Check whether this search is returning only the most recent

item from a chain of stories.

See setShowChainHeadOnly, above.

void doReadHeadlines (NewsChannel channel)

throws java.io.IOException

Run the search and prepare the results to be sent to a

NewsChannel.

See “HeadlineAnswer Class,” page 89 for how to deal with the

results.

NewsEdge Java API Guide

Page 99 of 152

Throws a java.io.IOException if there is a networking error.

Constants

See the constants for the MetaQuery superclass (page 102).

MetaHeadlineQuery Class

This is a shared superclass of HistorySearch (page 95) and

Profile (page 103). It defines general methods for configuring

a news story search, and extends the MetaQuery class (page

101).

Constructors

Client applications do not construct instances of this class

directly. It is a superclass of HistorySearch (page 95) and

Profile (page 103).

Methods

In addition to the methods inherited from MetaQuery (page

101), this class defines the following methods for its

HistorySearch (page 95) and Profile (page 103) subclasses:

String getQueryText ()

void setQueryText ()

Accessor and setter for the text of the search query.

The following table describes the pattern matching symbols:

Pattern

Description

* Match anything.

word1 word2 Match word1 or word2.

+word The specified word is required in the results.

-word The specified word is not allowed in the

NewsEdge Java API Guide

Page 100 of 152

 results.

/symbol Searches for a stock ticker symbol (e.g.,

“/MSFT”)

NOTE: Use only the symbol. Do not include

the exchange.

“a phrase” Match the word as a phrase.

The client application normally sets this value in the

HistorySearch (page 95) and Profile (page 103) constructors.

boolean getSuppressHeadlineOnly ()

void setSuppressHeadlineOnly (boolean flag)

Accessor and setter to determine whether headline-only

stories will be suppressed.

If the return value is true, the search will not include headline-

only (no body) stories in the results.

Note that since this method ignores all headline-only items,

news alerts that may be headline-only will be missed.

boolean getSuppressTemp ()

void setSuppressTemp (boolean flag)

Accessor and setter to determine whether the search will

suppress temporary stories.

If set to true, the search will not return any temporary stories.

Note that only Dow Jones has temporary stories. This method

does not affect stories from other providers.

String getWires ()

void setWires (String wires)

Accessor and setter to determine the pattern for wires

(sources) to search.

NewsEdge Java API Guide

Page 101 of 152

A list of all wires is available through the UserNewsInfo class

(page 122).

The pattern consists of “[“ for include or “]” for exclude,

followed by a space-separated list of two-letter wire

identifiers, as in the following examples:

“[PR BW” searches only PRNewsWire and Business Wire

“] DJ” searches everything but Dow Jones

An empty string means include all wires.

MetaQuery Class

The MetaQuery class is the base class for

MetaHeadlineQuery (page 99). It provides methods for use by

the HistorySearch (page 95) and Profile (page 103) classes.

This class sets the type of returned data. However, since the

default is to return everything, client applications normally do

not need to use these methods. If you want to return less than

the default, you could use this class to prune some of the

returned information.

Constructors

Client applications do not construct instances of this class

directly. It is a superclass of HistorySearch (page 95) and

Profile (page 103).

Methods

short getMetadataType ()

void setMetadataType (int type)

Accessor and setter to determine the type of metadata

returned about news stories. This method affects metadata

only in the headline object, not in the content.

NewsEdge Java API Guide

Page 102 of 152

The type is one of the MT_* constants defined below (page

102). By default, the news server returns all available

metadata. Normally, the client application does not need to

change that.

Constants

MT_NONE

Do not return any metadata with the Headline objects.

MT_SYMBOLS_AND_CODES

Return stock ticker symbols and subject codes.

MT_SYMBOLS_ONLY

Return only stock ticker symbols.

MT_CODES_ONLY

Return only subject codes.

MT_ALL_METADATA

Return all available metadata (default).

MT_SYMBOLS_AND_SPECIAL

Similar to MT_SYMBOLS_AND_CODES, but returns some

Dow Jones-specific date codes.

NewsChannel Class

Synopsis

NewsChannel channel = new NewsChannel(client);

Notes

This is the key access object for most news activities. The client

application must create a news channel before searching

NewsEdge Java API Guide

Page 103 of 152

historical news, receiving real-time news, and so on (see “Task

1: Connecting to the News Server,” page 8 and “How to

Connect to the Server,” page 19).

The class represents a message conduit to the news server.

You may create many news channels from one

gari.inap.InapClient connection (page 46). It inherits all of its

methods from gari.net.Channel (page 76).

The object is passed as an argument to other objects that need

to communicate with the server.

Constructors

NewsChannel (QuipClient client)

Construct a new news channel for passing messages to and

from the news server.

The client value is usually an InapClient object (a subclass of

QuipClient).

See “Task 1: Connecting to the News Server,” page 8 and

“How to Connect to the Server,” page 19.

Methods

There are no new methods for this class, but it does inherit

methods from Channel (page 76).

Profile Class

Synopsis

Profile profile = new Profile (name, pattern);

profile.setNumber(1); // or any other slot

profile.doSetProfile(newsChannel);

ProfileManager manager = new ProfileManager(profile, newsChannel);

NewsEdge Java API Guide

Page 104 of 152

Notes

Profile is the principal class for filtering real-time, live

streaming news. A client application registers a Profile with

the server for each different pattern it uses to filter incoming

news. As a subclass of MetaHeadlineQuery (page 99) and

MetaQuery (page 101), Profile inherits methods from both of

them, just as HistorySearch (page 95) does.

See also ProfileManager (page 111).

Constructors

Profile ()

Construct a new real-time news filter.

Profile (String name, String query)

This is a convenience constructor, equivalent to calling the

setName method (page 105) with the name parameter and the

setQueryText (page 99) with the query parameter.

The name is any string meaningful to the application – you

can use it for organizing profiles. If a profile name is not

specified, a default one is created. The default name is

“untitled #”, where “#” is the profile number.

Methods

In addition to the methods listed here, this class also inherits

all of the methods from its superclass MetaHeadlineQuery

(page 99) and MetaQuery (page 101).

short getProfileStatus ()

void setProfileStatus (short status)

Accessor and setter for the profile's active status. The status is

one of the constants NO_PROFILE, ACTIVE_PROFILE, or

INACTIVE_PROFILE, defined below (page 107).

NewsEdge Java API Guide

Page 105 of 152

When a profile is not active, it stays on the server, but no

Headline objects are sent to the client application.

boolean getShowAll ()

void setShowAll (boolean flag)

Accessor and setter for the showAll property.

If true, return all stories, even if they do not match the query. If

false (default), return only stories that match the query.

Setting showAll to true gives the same behaviour as using the

* pattern (see HistorySearch, page 96).

boolean getHeadlineResIDOnly()

void setHeadlineResIDOnly (boolean flag)

Accessor and setter for the headlineResIDOnly property.

This method controls whether the Headline objects returned

will contain all of the information about the story (headline

text, metadata, and so on) or just the ResourceID.

The default is false (i.e., return all of the information). Use true

to return only the ResourceID.

String getName ()

void setName (String name)

Accessor and setter for the profile's name.

This method is provided for the benefit of client applications,

which can use it to find and organize profiles. The server does

not require it. If a profile name is not specified, a default one is

created. The default name is “untitled #,” where “#” is the

profile number.

int getNumber ()

void setNumber (int number)

Accessor and setter for the profile's slot number.

NewsEdge Java API Guide

Page 106 of 152

The news server has a series of slots for different profiles,

numbered from 1 to 1023, depending on the account's

entitlements.

See the UserNewsInfo class (page 122) to find out your

entitlements (including maximum number of profiles).

Assigning a profile to a slot deletes any profile currently

occupying that slot.

boolean getBackfill ()

void setBackfill (boolean flag)

Accessor and setter for the backfill property.

This method determines whether the news server will fill the

profile with recently-arrived stories as well as including new

items as they arrive. If true, the server will backfill the profile

at startup.

boolean getReturnOK ()

void setReturnOK (boolean flag)

Accessor and setter for the returnOK property.

This method determines whether the server will acknowledge

the profile submission. An acknowledgement message

(“ADD_OK”) is returned on the channel on which the profile

was submitted.

boolean getIsNew ()

Returns true if the profile has recently been created, false if

otherwise.

void doSetProfile (NewsChannel channel)

throws java.io.IOException

Submit this profile to the server through a news channel. The

application must use this method before receiving stories. It

will replace any profile currently in the slot (see getNumber

and setNumber, page 105).

NewsEdge Java API Guide

Page 107 of 152

Throws a java.io.IOException if there is a networking error.

void doDeleteProfile (NewsChannel channel)

throws java.io.IOException

Remove this profile from the server.

Normally, client applications should not call this method

directly. Instead, use the deleteProfile method (page 112) in

the ProfileManager class.

Throws a java.io.IOException if there is a networking error.

Constants

These constants describe the status of the profile. See

getProfileStatus and setProfileStatus (page 104).

NO_PROFILE

There is no profile in this slot.

ACTIVE_PROFILE

The profile in this slot is active, and stories are being

delivered.

INACTIVE_PROFILE

There is a profile in this slot, but it is not active, and no stories

are being delivered.

ProfileGroup Class

Synopsis

ProfileGroupRequest.doReadProfileGroup(channel);

ProfileGroup group = new ProfileGroup(channel.receive());

ExtendedEnumeration e = group.getElements();

while (e.hasMoreElements()) {

NewsEdge Java API Guide

Page 108 of 152

}

Notes

Profile profile = (Profile)e.nextElement();

// process the profile

The ProfileGroup class represents all the profiles currently

registered with the server for the current account. The

ProfileGroup object comes through a ProfileGroupRequest

(page 109).

The client application can use this object to display profiles in

a list for a user, to modify them programmatically, and so on

(see “How to Examine your Profiles,” page 35).

Constructors

ProfileGroup (QuipBuffer buffer)

throws gari.news.ParsingException

Create a new profile group from a network message.

You must use the doReadProfileGroup method (page 109) in

ProfileGroupRequest first, so that the server will send the

information to the channel.

Throws a gari.news.ParsingException if there is an internal

problem reading the response.

Methods

int getMaxProfiles ()

Return the maximum number of profile slots available (not

necessarily the number in use). This method is also

available through UserNewsInfo (page 122).

gari.util.ExtendedEnumeration getElements ()

Return an ExtendedEnumeration (page 128) of all the profiles

currently registered with the server.

NewsEdge Java API Guide

Page 109 of 152

This method allows the application to iterate through the

profiles.

Use the Profile getNumber method (page 105) to find each

profile's slot.

ProfileGroupRequest Class

Synopsis

ProfileGroupRequest.doReadProfileGroup(channel);

ProfileGroup group = new ProfileGroup(channel.receive());

Notes

The ProfileGroupRequest class defines a static method for

reading a ProfileGroup from the news server.

Constructors

Client applications should not instantiate this class, since it has

only static methods.

Methods

static void doReadProfileGroup (NewsChannel channel)

throws java.io.IOException

Instruct the server to send the profile group information. The

server returns this information in a message that the client

application can obtain using the NewsChannel receive()

method (page 76).

The ProfileGroup constructor (page 108) parses the message

returned and creates a profile group.

Throws a java.io.IOException if there is a networking error.

NewsEdge Java API Guide

Page 110 of 152

ProfileHeadlines Class

Synopsis

public void update(Observable src, Object arg) {

ProfileHeadlines ph = (ProfileHeadlines)arg;

HeadlineAnswer answer = ph.getHeadlines();

// ...

}

Notes

The ProfileHeadlines class is a wrapper class for

HeadlineAnswer. It holds the HeadlineAnswer object (a

packet of Headline objects being delivered to the client

application) together with a flag indicating whether these

stories are backfilled (see the getBackfill method page

106).

When the client application sets up a profile using the

ProfileManager (page 111), the client application's observer

update method will receive instances of this object.

Normally, you simply get the HeadlineAnswer using the

getHeadlines method (page 110).

Constructors

Client applications should not construct ProfileHeadlines

objects directly.

Methods

HeadlineAnswer getHeadlines ()

Return the packet of newly-arrived Headline objects (see

“HeadlineAnswer Class,” page 89 for more details).

NewsEdge Java API Guide

Page 111 of 152

boolean isBackfill ()

Return true if these are recently-arrived stories rather than

real-time stories (see the getBackfill method on page 106).

ProfileManager Class

Synopsis

ProfileManager manager = new ProfileManager(profile, newsChannel);

manager.addObserver(new MyProfileFilter());

Notes

This class implements the java.util.Observable interface. It

allows the client application to receive news through a Profile

(page 103) and to manage its lifecycle.

The client application must create a class implementing the

standard Java java.util.Observer class. The library passes

news through the observer's update method in the form of

ProfileHeadlines objects. See “Task 3: Obtaining and Filtering

Real-Time News,” page 12, “How to Filter Real-Time

Headlines,” page 35 and “ProfileHeadlines Class,” page 110.

The flow of stories (called a “drain”) can be stopped and

started. The news server will save stories, space permitting,

and transmit them once the client application restarts the

drain.

Constructors

ProfileManager (Profile profile, NewsChannel channel)

Create a new profile manager for the profile and channel.

NewsEdge Java API Guide

Page 112 of 152

Methods

Profile getProfile ()

Get the profile being managed (the same profile passed

through the constructor of the changeProfile method, below).

void restartDrain ()

Stop and restart the transmission of stories to the observers.

void startDrain ()

Start the transmission of stories to the observers.

void stopDrain ()

Stop the transmission of stories to the observers. The news

server will save new stories (as space allows) for transmission

once the client application invokes startDrain or restartDrain

(see above).

void deleteProfile ()

Delete the profile being managed. This is the preferred

method for removing a profile from the news server.

void changeProfile (Profile profile)

Remove the current profile and add a new profile in its place.

void addObserver (java.util.Observer observer)

Add an observer to receive packets of real-time stories as they

arrive. There may be multiple observers receiving packets at

the same time.

void deleteObserver (java.util.Observer observer)

Delete the specified observer, so that it will no longer receive

packets of stories.

void deleteObservers ()

Delete all observers currently receiving packets of stories.

NewsEdge Java API Guide

Page 113 of 152

QuantifiedHeadline Class

Synopsis

QuantifiedHeadlineRequest.doReadHeadlines(channel);

QuantifiedHeadlineAnswer answer = new

QuantifiedHeadlineAnswer(channel.receive());

ExtendedEnumeration results = answer.getElements();

while (results.hasMoreElements()) {

QuantifiedHeadline headline =

(QuantifiedHeadline)results.nextElement();

System.out.println(headline.getCount() + ": " +

headline.getText());

}

Notes

This class extends the Headline class (see “Headline Class,”

page 85). It is identical to the Headline class, except for the

addition of a property for the number of times the story has

been viewed.

The news server does not support quantified headlines for all

accounts by default – you must make special arrangements

with NewsEdge Customer Support to use them.

Note that this feature is not available on all servers.

Constructors

Client applications should not construct these objects directly.

The objects come from a QuantifiedHeadlineAnswer (page

114).

Methods

In addition to the following, this class inherits the methods

from the Headline class (page 85).

NewsEdge Java API Guide

Page 114 of 152

int getCount ()

Returns the number of times the story has been read.

QuantifiedHeadlineAnswer Class

Synopsis

QuantifiedHeadlineRequest.doReadHeadlines(channel);

QuantifiedHeadlineAnswer answer = new

QuantifiedHeadlineAnswer(channel.receive());

ExtendedEnumeration results = answer.getElements();

Notes

The QuanitfiedHeadlineAnswer class is similar to

HeadlineAnswer (see “HeadlineAnswer Class,” page 89),

except that it returns an enumeration of QuantifiedHeadline

objects instead of Headline objects.

Constructors

There is only one constructor for use by client applications:

QuantifiedHeadlineAnswer (gari.net.QuipBuffer buffer)

Construct a new object based on a message received from the

news server. The buffer is the result of calling the receive

method (page 76) on a NewsChannel.

Note that it is necessary to invoke the

QuantifiedHeadlineRequest doReadHeadlines method on

the news channel first (page 115).

The client application should treat the QuipBuffer parameter

as a black box.

NewsEdge Java API Guide

Page 115 of 152

Methods

ExtendedEnumeration getElements ()

Return a gari.util.ExtendedEnumeration of

QuantifiedHeadline objects.

Note that each item in the enumeration must be cast from

java.lang.Object to QuantifiedHeadline (page 113).

QuantifiedHeadlineRequest Class

Synopsis

QuantifiedHeadlineRequest.doReadHeadlines(channel);

QuantifiedHeadlineAnswer answer = new

QuantifiedHeadlineAnswer(channel.receive());

ExtendedEnumeration results = answer.getElements();

Notes

This class defines a static method that causes the news server

to send QuantifiedHeadline objects through the news

channel.

The client application must invoke the static

doReadHeadlines method (page 115) on the news channel

before creating a QuantifiedHeadlineAnswer object (page

114), so that the server will send the information to the

channel.

Constructors

Client applications should not instantiate this class, since it has

only static methods.

Methods

static void doReadHeadlines (NewsChannel channel)

throws java.io.IOException

NewsEdge Java API Guide

Page 116 of 152

Instruct the news server to deliver QuantifiedHeadline

objects through the news channel.

Note that quantified headline support is available only by

special arrangement with NewsEdge Customer Support. It is

not available for most accounts.

Throws a java.io.IOException if there is a networking error.

ResourceID Class

Synopsis

ResourceID id = headline.getResourceID();

String date = id.getDate();

String time = id.getTime(); // etc.

StoryRequest request = new StoryRequest(id);

Notes

This class provides a multi-part identifier for the story. The

identifier includes some metadata, such as the date, time,

provider, service, and a short identifier (similar to the slug).

The identifier can be converted to a string and parsed back

into a ResourceID object.

This is the key object for obtaining the full content of a story

(see StoryRequest, page 120).

Constructors

ResourceID (String id)

Parse a resource ID string into a ResourceID object. This is the

reverse of the toString method (page 118).

Normally, client applications do not need to use the

constructor explicitly, since they obtain preparsed ResourceID

objects from the Headline object getResourceID method (page

122) for both real-time and historical news.

NewsEdge Java API Guide

Page 117 of 152

See toString (page 118) for the string format.

Methods

String getDate ()

Return an 8-character string describing the story's publication

date (not necessarily the date of transmission).

The format is YYYYMMDD (e.g., “20070322” for March 22,

2007).

The date is the same for all takes of a story: it is the original

publication time, not the transmission time.

String getTime ()

Return a 4-character string describing the story's publication

time (not necessarily the time of transmission).

The format is HHMM on a 24-hour clock, (e.g., “1500” for 3:00

pm).

The time is always in U.S. Eastern time (EDT or EST, as

appropriate).

String getProvider ()

Return an 8-character string identifying the story's upstream

provider (i.e., the provider before NewsEdge).

Identifiers are right-padded with underscore characters to

bring them up to 8 characters (e.g., “PR_NEWS_” for PR

Newswire).

See “How to List the Available Wires” (page 41) for how to

look up the full name of a provider, and other related

information.

NewsEdge Java API Guide

Page 118 of 152

String getService ()

Return an 8-character string identifying the story's upstream

provider's service. Providers typically offer multiple services

for different topics, audiences, and so on.

Identifiers are right-padded with underscore characters to

bring them up to 8 characters (e.g., “USPR ” for US press

releases).

Service identifiers are unique to the provider, but not

necessarily globally unique.

See “How to List the Available Wires” (page 41) for how to

look up the full name of a provider, and other related

information.

String getID ()

Return the short identifier for the news story. The identifier is

like a slug but is guaranteed to be unique for the

date/time/provider/service combination. It may or may not use

the original provider's slug, depending on uniqueness.

This ID stays the same for all takes of a story. The length is not

restricted (e.g., “NYTH008”).

String toString ()

Convert this ResourceID to its string representation.

The constructor can parse the string to make a new

ResourceID object (for example, if the client application

needed to store or transmit it as text, then retrieve it again).

In the example

“200703221100PR_NEWS_USPR NYTH008”

The first 8 characters are date (see getDate, page 117)

The next 4 characters are time (see getTime, page 117)

The next 8 characters are provider id (see getProvider, page 117)

The next 8 characters are service id (see getService, page 118)

NewsEdge Java API Guide

Page 119 of 152

The remainder is the identifier/slug (see getID, page 118)

StoryAnswer Class

Synopsis

StoryRequest request = new StoryRequest(resourceId);

request.doReadStory(channel);

StoryAnswer answer = new StoryAnswer(channel.receive());

String content = answer.getText();

Notes

Use this class to receive the full content of a story from the

news server. The library delivers the story as text after the

client application invokes the StoryRequest doReadStory

(page 121) method on the news channel. The format depends

on the properties of the StoryRequest object.

For more information on how to get the full content of a news

story, see “How to Obtain the Content of a Story,” page 42.

Constructors

StoryAnswer (QuipBuffer buffer)

Construct a story answer from a message received from the

news server, after requesting it using a StoryRequest object

(page 120).

Use the NewsChannel receive method (page 76) to obtain the

message buffer, as in the synopsis (above).

Methods

String getText ()

Get the full content of the news story in text form.

NewsEdge Java API Guide

Page 120 of 152

The format may be ASCII, HTML, XML, and so on, depending

on the properties of the StoryRequest object; however, the

library will always return it as a Java String object.

This is the only way to get the full content and metadata for a

news story through this library.

StoryRequest Class

Synopsis

StoryRequest request = new StoryRequest(resourceId);

request.doReadStory(channel);

StoryAnswer answer = new StoryAnswer(channel.receive());

Notes

Use this class to request the full content (and full metadata) of

a story from the news server. After issuing the request, you

can use the NewsChannel receive method (page 76) to read a

reply from the server and construct a StoryAnswer object

(page 119) to parse the message.

Different delivery formats are available (see “How to Obtain

the Content of a Story,” page 42).

Constructors

StoryRequest (Headline headline)

StoryRequest (Headline headline, String stylesheet)

StoryRequest (Headline headline, String stylesheet, boolean showChain)

These are convenience constructors that invoke the Headline

object's getResourceID (page 122) method to obtain the

resource id of the story.

NewsEdge Java API Guide

Page 121 of 152

StoryRequest (ResourceID resourceID)

StoryRequest (ResourceID resourceID, String stylesheet)

StoryRequest (ResourceID resourceID, String stylesheet, Boolean showChain)

These three are the same as the first three constructors above

but take a resource id object directly.

The first argument is the key for looking up the story (either

the resource id, or the Headline object containing it).

The second argument is the style sheet, which controls the

delivery format (see getStylesheet, below).

The third argument controls whether the result shows chained

stories (multiple takes building on each other) or not. Defaults

to false.

Methods

String getStylesheet ()

void setStylesheet (String stylesheet)

Accessor and setter for the style sheet property.

The options are “TEXT” for plain text, “HTML” for hypertext

markup format (used on the Web), “NEWSML” for the IPTC

NewsML markup language with embedded XHTML, “NITF”

for the IPTC News Industry Text Format, and “XMLNEWS”

for Moody’s Analytics’ XMLNews format.

Defaults to “XMLNEWS”.

void setShowChain (boolean flag)

Setter for the showChain property. If true, show multiple

chained takes of the story (see “Constants,” page 122).

void doReadStory (NewsChannel channel)

throws java.io.IOException

Read the story into the news channel.

NewsEdge Java API Guide

Page 122 of 152

You must invoke this method before creating a StoryAnswer

object (page 119).

Throws a java.io.IOException if there is an error reading the

story.

Headline getHeadline ()

Get the Headline object (if one was supplied to a constructor).

The return value is undefined if a ResourceID was passed

instead.

ResourceID getResourceID ()

Get the resource id of the news story, as supplied to the

constructor.

Constants

The following constants are returned by the setShowChain

method (page 121):

RETRIEVE_CHAIN

Alias for the boolean true value, for retrieving a chain of takes

rather than just the most recent one.

RETRIEVE_TAKE_ONLY

Alias for the boolean false value, for retrieving only the most

recent take of a story.

UserNewsInfo Class

Synopsis

UserNewsInfoRequest.doUserNewsInfoRequest(channel);

UserNewsInfo info = new UserNewsInfo(channel.receive());

String maximumProfiles = info.getNProfiles();

WireList wires = info.getWireList();

NewsEdge Java API Guide

Page 123 of 152

Notes

The UserNewsInfo class provides information on

entitlements, such as limits and so on, for the current user. The

client application constructs a UserNewsInfoRequest (page

124) object by reading the buffer from NewsChannel.

Note that the methods return numeric values as string

representations. Use java.lang.Integer or java.lang.Float

valueOf methods (or similar) to convert to a number.

Constructors

Client applications do not need to construct instances of this

class.

Methods

Most of the methods in this class are obsolete. Only the

following are still relevant for client applications:

java.lang.String getNProfiles ()

Returns a string representation of the number of profiles (real-

time filter) slots available.

See “Task 3: Obtaining and Filtering Real-Time News,” page

12 and “How to Examine your Profiles,” page 35.

java.lang.String getNWires ()

Returns a string representation of the number of wires

(upstream providers) available.

WireList getWireList ()

Returns a list of records describing each of the wires

(upstream providers) available.

See “WireList Class,” page 126 for more information.

NewsEdge Java API Guide

Page 124 of 152

UserNewsInfoRequest Class

Synopsis

UserNewsInfoRequest.doUserNewsInfoRequest(channel);

UserNewsInfo info = new UserNewsInfo(channel.receive());

Notes

The UserNewsInfoRequest class holds a single static method

for reading entitlement information from the server into a

NewsChannel.

See “How to Discover Your Entitlements,” page 26.

Methods

static void doUserNewsInfoRequest (NewsChannel channel)

Read the entitlements for the account into a buffer in the

NewsChannel. See UserNewsInfo (page 122), for information

on parsing.

Throws a java.io.IOException if there is a networking error.

WireInfo Class

Synopsis

WireInfo wire = wireList.getWireInfo(i);

$providerService = wire.getProviderService();

$name = wire.getDescription();

Notes

The WireInfo class provides two-letter codes, full names, and

other information about one news source. It returns up to two

levels: base wire (provider) and subwire (product/service). See

“How to List the Available Wires,” page 41.

NewsEdge Java API Guide

Page 125 of 152

The library uses two-letter codes for searches. Client

applications can display full names to human readers.

Constructors

Client applications should not call the constructor directly –

the library creates all instances of the class.

Methods

This class contains several internal or obsolete methods. The

following are the methods that client applications may use:

String getBaseWire ()

Return the two-character code for the base wire service.

String getDisplayWire ()

Return the two-character code for the wire service. If this is a

subwire, it may be different than the base wire.

boolean isSubwire ()

True if this is a sub-service of a different base wire.

String getProviderService ()

Returns a 16-character string. The first 8 characters of the

string are the provider ID right-padded with underscore

characters (e.g., “BIZWIRE_” for Business Wire). This is the

same as the value returned by ResourceId.getProvider() (page

117).

The last 8 characters of the string are the service ID right-

padded with underscore characters (such as “USPR ” for

US press releases). This is the same as the value returned by

ResourceId.getService() (page 118).

NewsEdge Java API Guide

Page 126 of 152

String getDescription ()

Returns the name of the provider in a format suitable for

display (for example, “Business Wire”).

WireList Class

Synopsis

WireList wires = userNewsInfo.getWireList();

for (int i = 0; i < wires.size(); i++) {

WireInfo wire = wires.getWireInfo(i);

// process the wire

}

Notes

The WireList class provides a list of WireInfo objects (page

124), representing information sources (wires). The WireList

getWireList () method (page 123) in the UserNewsInfo class

creates a WireList for the client application.

This class implements the standard Java collections interface

java.util.List. It adds a getWireInfo method to avoid casting.

Constructors

Client applications should not call the constructors directly,

since the library creates instances for the client application.

Methods

In addition to standard methods from java.util.List, this class

includes the following method:

WireInfo getWireInfo (int index)

Return information about the wire at index (zero-based).

The following two methods are equivalent, but getWireInfo

avoids the need to cast:

NewsEdge Java API Guide

Page 127 of 152

info = (WireInfo)wires.get(index);

info = wires.getWireInfo(index);

ParsingException

Synopsis

UserNewsInfo info = null;

try {

info = new UserNewsInfo(channel.receive());

} catch (ParsingException ex) {

System.err.println("Error parsing information from news

server: " +

ex.getMessage());

}

The constructors for ProfileGroup (page 108) and

UserNewsInfo (page 122) throw this exception when there is

an error parsing a message from the server. It usually indicates

an internal error, not a client error.

Constructors

Client applications do not need to create new instances of this

exception.

Methods

This class inherits its methods from java.lang.Exception.

gari.util package

The gari.util package represents utility classes and methods.

The most important method is ExtendedEnumeration, which

the library uses for lists of Headline objects, and other similar

information.

NewsEdge Java API Guide

Page 128 of 152

ExtendedEnumeration Interface

Synopsis

ExtendedEnumeration headlines = headlineAnswer.getElements();

int headlineCount = headlines.count();

while (headlines.hasMoreElements()) {

Headline headline = (Headline)headlines.nextElement();

// process the headline

}

Notes

This class represents an extension of the standard Java

java.util.Enumeration interface. It adds a method to count the

remaining items in the enumeration, and a method to reset the

counter. It is used for lists of gari.news.Headline (page 85)

and gari.news.Profile (page 103) objects.

Methods

int count ()

Return the number of items remaining unread in the

enumeration.

void resetIndex ()

Reset the enumeration so that it returns to the beginning.

Base64 Class

Synopsis

String encoded = Base64.encode(byteData);

byte decoded[] = Base64.decode(encoded);

NewsEdge Java API Guide

Page 129 of 152

Notes

This class represents static methods for Base64 encoding and

decoding.

Base64 encoding allows binary objects like photos to be sent as

text. It is used mainly internally, but it might be useful for

client applications. There are multiple variants of Base64, and

this class gives access to the flavor that NewsEdge uses.

Constructors

Client applications should not instantiate this class, since it has

only static methods.

Methods

static byte[] decode (String encoded)

Decode a well-formed complete Base64 string back into an

array of bytes. It must have an even multiple of 4 data

characters (not counting \n), padded out with “=” as needed.

static String encode (byte data[])

Encode an arbitrary array of bytes as Base64 printable ASCII.

It will be broken into lines of 72 characters each. The last line is

not terminated with a line separator. The output will always

have an even multiple of data characters, exclusive of \n. It is

padded out with “=”.

detectProxy Class

Synopsis

ProxyData proxy = null;

detectProxy detector = new detectProxy(new

URL("http://www.yahoo.com/"));

if (detector.isProxySet()) {

proxy = new ProxyData(detector.getProxyHost(),

NewsEdge Java API Guide

Page 130 of 152

}

Notes

Integer.toString(detector.getProxyPort()));

The detectProxy class is a utility class for auto-detecting a

network proxy when the proxy settings cannot be known in

advance. It is mainly for use by a Java applet that might be

running on a customer’s own machine. For a regular client

application, you can hard-code the proxy settings.

If you pass a well-known URL like http://www.yahoo.com/ or

http://www.google.com/, the class tries to auto-detect the

proxy settings.

Constructors

detectProxy (java.net.URL url)

Create a new proxy detector. For the URL argument, it is best

to use a well-known URL like http://www.yahoo.com/ or

http://www.google.com/.

Methods

boolean isProxySet ()

Value is true if a proxy was detected.

String getProxyHost ()

If a proxy was detected, return its host address.

int getProxyPort ()

If a proxy was detected, return its TCP port number.

http://www.yahoo.com/
http://www.google.com/
http://www.yahoo.com/
http://www.google.com/

NewsEdge Java API Guide

Page 131 of 152

Appendix A: Quick Start Listings

This appendix provides complete, short Java command-line application samples for

the following tasks from the Quick Start chapter:

“Task 1: Connecting to the News Server,” page 8

“Task 2: Searching Historical News,” page 9

“Task 3: Obtaining and Filtering Real-Time News, page 12

“Task 4: Retrieving the Full Text of an Article,” page 15

The applications are designed for training rather than production use, and do not

include robust error handling or logging.

Listing: Connecting to the News Server

(From “Task 1: Connecting to the News Server,” page 8.)

The following is a complete, short Java command-line application to ping a

NewsEdge News Server and display an error message (on failure) or some

information from the server (on success). You must replace the values of the

USERNAME, PASSWORD, and HOSTNAME constants with your actual connection

information:

package gari.examples;

import gari.inap.InapClient;

import gari.inap.LoginData;

import gari.net.Channel;

import gari.net.QuipException;

import java.io.IOException;

import java.net.InetAddress;

/**

* Ping an NewsEdge News Server.

*/

public class NewsServerPing {

// change these

NewsEdge Java API Guide

Page 132 of 152

private final static String USERNAME = "my_username";

private final static String PASSWORD = "my_password";

private final static String HOSTNAME = "my_hostname";

public static void

main(String[] args)

throws IOException, QuipException {

InapClient client = amcConnect(USERNAME, PASSWORD, HOSTNAME);

// Test if the connection is active

System.out.println("Connected to NewsEdge News Server.");

System.out.println(" Is Connected: " + client.isConnected());

}

/**

* Establish a connection to the NewsEdge News Server.

*/

private static InapClient

amcConnect(String username, String password,

String hostname)

throws IOException, QuipException

{

LoginData login = new LoginData(username, password, "JAPI");

InetAddress address = InetAddress.getByName(hostname);

return new InapClient(address, Channel.STARTUP_SERVICE, login);

}

}

Listing: Searching Historical News

(From “Task 2: Searching Historical News,” page 9.)

The following is a complete demo application sample for searching historical news

articles. You must replace the values of the USERNAME, PASSWORD, and

HOSTNAME constants with your actual connection information:

package gari.examples;

import gari.inap.InapClient;

NewsEdge Java API Guide

Page 133 of 152

import gari.inap.LoginData;

import gari.net.Channel;

import gari.net.QuipException;

import gari.news.Headline;

import gari.news.HeadlineAnswer;

import gari.news.HistorySearch;

import gari.news.NewsChannel;

import gari.util.ExtendedEnumeration;

import java.io.IOException;

import java.net.InetAddress;

public class NewsHistorySearch {

// change these

private final static String USERNAME = "my_username";

private final static String PASSWORD = "my_password";

private final static String HOSTNAME = "my_hostname";

public static

void main(String[] args)

throws IOException, QuipException {

InapClient client = amcConnect(USERNAME, PASSWORD, HOSTNAME);

NewsChannel channel = new NewsChannel(client);

ExtendedEnumeration searchResult = doHistorySearch(channel, "xml");

System.out.println("There are " + searchResult.count()

+ " matching articles.\n");

while (searchResult.hasMoreElements()) {

Headline metadata = (Headline) searchResult.nextElement();

System.out.println("Headline: " + metadata.getText());

System.out.println("Resource id: " + metadata.getResourceID()

+ "\n");

}

}

/**

* Search past articles.

*/

private static ExtendedEnumeration

doHistorySearch(NewsChannel channel,

String pattern)

NewsEdge Java API Guide

Page 134 of 152

throws IOException {

HistorySearch search = new HistorySearch(pattern);

search.doReadHeadlines(channel);

HeadlineAnswer answer = new HeadlineAnswer(channel.receive());

return answer.getElements();

}

/**

* Establish a connection to the NewsEdge News Server.

*/

private static InapClient

amcConnect(String username, String password,

String hostname)

throws IOException, QuipException

{

LoginData login = new LoginData(username, password, "JAPI");

InetAddress address = InetAddress.getByName(hostname);

return new InapClient(address, Channel.STARTUP_SERVICE, login);

}

}

Listing: Obtaining and Filtering Real Time
News

(From “Task 3: Obtaining and Filtering Real-Time News,” page 12.)

In this sample application, the sample class itself implements the java.util.Observer

interface. It displays news headlines and resource IDs until you stop the application.

As with the other examples, enter your actual username, password, and hostname in

the constants at the beginning of the code.

Note again that this may not work with proxy servers. For more information on

working with proxy servers, see “How to Connect Through a Proxy,” page 21.

package gari.examples;

import gari.inap.InapClient;

import gari.inap.LoginData;

NewsEdge Java API Guide

Page 135 of 152

import gari.net.Channel;

import gari.net.QuipException;

import gari.news.Headline;

import gari.news.HeadlineAnswer;

import gari.news.NewsChannel;

import gari.news.Profile;

import gari.news.ProfileHeadlines;

import gari.news.ProfileManager;

import gari.util.ExtendedEnumeration;

import java.io.IOException;

import java.net.InetAddress;

import java.util.Observable;

import java.util.Observer;

public class ProfileFilter implements Observer {

// change these

private final static String USERNAME = "my_username";

private final static String PASSWORD = "my_password";

private final static String HOSTNAME = "my_hostname";

public static void

main(String[] args)

throws IOException, QuipException {

InapClient client = amcConnect(USERNAME, PASSWORD, HOSTNAME);

NewsChannel channel = new NewsChannel(client);

startFilter(channel, "*", new ProfileFilter());

}

public static void

startFilter(NewsChannel channel, String pattern,

Observer observer)

throws IOException {

Profile profile = new Profile("Sample profile", "*");

profile.setNumber(1);

profile.doSetProfile(channel);

ProfileManager manager = new ProfileManager(profile, channel);

manager.addObserver(new ProfileFilter());

}

NewsEdge Java API Guide

Page 136 of 152

public void

update(Observable src, Object arg) {

HeadlineAnswer answer = ((ProfileHeadlines) arg).getHeadlines();

ExtendedEnumeration headlines = answer.getElements();

while (headlines.hasMoreElements()) {

Headline metadata = (Headline) headlines.nextElement();

System.out.println("Headline: " + metadata.getText());

System.out.println("Resource id: " + metadata.getResourceID()

+ "\n");

}

}

/**

* Establish a connection to the NewsEdge News Server.

*/

private static InapClient

amcConnect(String username, String password,

String hostname)

throws IOException, QuipException

{

LoginData login = new LoginData(username, password, "JAPI");

InetAddress address = InetAddress.getByName(hostname);

return new InapClient(address, Channel.STARTUP_SERVICE, login);

}

}

Listing: Retrieving the Full Text of an Article

(From “Task 4: Retrieving the Full Text of an Article,” page 15.)

The following is a complete demo application, reusing the amcConnect() and

doHistorySearch() methods developed in earlier examples. You must replace the

values of the USERNAME, PASSWORD, and HOSTNAME constants with your

actual connection information:

package gari.examples;

import gari.inap.InapClient;

import gari.inap.LoginData;

import gari.net.Channel;

NewsEdge Java API Guide

Page 137 of 152

import gari.net.QuipException;

import gari.news.Headline;

import gari.news.HeadlineAnswer;

import gari.news.HistorySearch;

import gari.news.NewsChannel;

import gari.news.ResourceID;

import gari.news.StoryAnswer;

import gari.news.StoryRequest;

import gari.util.ExtendedEnumeration;

import java.io.IOException;

import java.net.InetAddress;

public class ArticleFetch {

// change these

private final static String USERNAME = "my_username";

private final static String PASSWORD = "my_password";

private final static String HOSTNAME = "my_hostname";

public static void

main(String[] args)

throws IOException, QuipException {

InapClient client = amcConnect(USERNAME, PASSWORD, HOSTNAME);

NewsChannel channel = new NewsChannel(client);

ExtendedEnumeration searchResult = doHistorySearch(channel, "xml");

Headline metadata = (Headline) searchResult.nextElement();

String article = getArticle(channel, metadata.getResourceID());

System.out.println("Story text:\n" + article);

}

/**

* Get the text of an article.

*/

private static String

getArticle(NewsChannel channel, ResourceID resourceId)

throws IOException {

StoryRequest request = new StoryRequest(resourceId);

request.doReadStory(channel);

StoryAnswer answer = new StoryAnswer(channel.receive());

return answer.getText();

NewsEdge Java API Guide

Page 138 of 152

}

/**

* Search past articles.

*/

private static ExtendedEnumeration

doHistorySearch(NewsChannel channel,

String pattern)

throws IOException {

HistorySearch search = new HistorySearch(pattern);

search.doReadHeadlines(channel);

HeadlineAnswer answer = new HeadlineAnswer(channel.receive());

return answer.getElements();

}

/**

* Establish a connection to the NewsEdge News Server.

*/

private static InapClient amcConnect(String username, String password,

String hostname) throws IOException, QuipException

{

LoginData login = new LoginData(username, password, "JAPI");

InetAddress address = InetAddress.getByName(hostname);

return new InapClient(address, Channel.STARTUP_SERVICE, login);

}

}

NewsEdge Java API Guide

Page 139 of 152

Appendix B: Architectural Overview

The NewsEdge Java API allows you to develop an interface

between your application and the NewsEdge News Server,

enabling you to connect to the news server (via proxy, port

80 and so on), to search/retrieve metadata and content from

news stories, to search news archives, and to launch and

filter real-time news feeds.

This appendix describes the architecture of the NewsEdge API

library. It is not necessary to read this appendix to be able to

program the client application. The appendix is useful to those

who are interested in the underlying architecture of the

library.

The library includes the following packages:

gari.inap Package – contains the transaction networking layer.

Includes the InapClient and LoginData classes.

gari.media Package – contains the API for the media server.

Includes the MediaConnection and MediaData classes.

gari.media.iptc Package – provides access to advanced image

metadata. Includes the IPTCProfile class and IPTCConstants

interface.

gari.net Package – contains the lower-level networking support

messaging layer for the library. Includes the QuipEventListener

interface, Channel class and various Quip classes.

gari.news Package – contains the main application layer.

Includes the Headline, HistorySearch, MetaHeadlineQuery,

and Profile class (among others).

gari.util package – contains utility classes and methods such as

ExtendedEnumeration interface and Base64 class.

For more information on the packages and classes, see “API”

(page 45).

NewsEdge Java API Guide

Page 140 of 152

Network Stack

The NewsEdge Java API is a custom networking stack built on

top of TCP/IP, as in the following diagram (the lighter parts in

the center are NewsEdge):

Client application

News

(message layer)

Inap

(transaction layer)

Media

(download

layer)

Quip

(packet layer)

TCP/IP (Internet)

The main part of the NewsEdge library consists of three

layers:

Quip layer, which provides basic packet networking and error

handling on top of TCP/IP (see gari.net Package, page 75)

Inap layer, which provides transactional support on top of the

Quip layer (see gari.inap Package, page 46)

News layer, which provides full messaging support on top of

the Inap layer (see gari.news Package, page 85)

The client application works mainly through the news layer.

Note that there is an alternative, single-layer stack for media

downloads such as photos, and so on (see gari.media Package,

page 50).

NewsEdge Java API Guide

Page 141 of 152

The NewsEdge library does not use HTTP, but you can

configure it to use port 80 to work with existing firewall rules

(see “How to Connect Through Port 80” page 22).

Messaging Patterns

The NewsEdge library uses two messaging patterns:

Request/response (pull): the client application requests

information from the news server and receives a reply (for

example: historical news searches, wire information)

Syndication (push): the client application receives information

continuously as it becomes available (for example: real-time

streaming news)

Request/Response Operations

Request/response operations typically involve four steps:

1. Construct a request object.

2. Issue the request to the news server.

3. Read the response message from the news server.

4. Construct a response object from the message.

An historical news search (see “How to Search Historical

Headlines,” page 27) is an example of a request/response

operation, and involves the following steps:

1. Construct a gari.news.HistorySearch object (page 95).

2. Use the HistorySearch doReadHeadlines method (page 98)

to issue the request to the news server through a

gari.news.NewsChannel.

3. Read the response with the NewsChannel receive method

(page 76).

4. Construct a gari.news.HeadlineAnswer object (page 89)

from the response message.

NewsEdge Java API Guide

Page 142 of 152

Syndication Operations

Syndication operations are asynchronous, and typically

involve three steps:

1. Create a listener object.

2. Register the listener object with the library.

3. Respond to messages the library delivers.

Listener objects are invoked in a separate Java thread, so they

do not interfere with the main program flow.

A real-time news syndication (see “How to Start a Real-Time

News Feed,” page 33) is an example of a syndication

operation, and involves the following steps:

1. Construct an object implementing the java.util.Observer

interface.

2. Register the observer with the library through a

gari.news.ProfileManager object (page 111).

The library invokes the observer's update method (in a

separate thread) whenever new news arrives.

NewsEdge Java API Guide

Page 143 of 152

Glossary

Component: One logical part of a package, such as the photo, main story, or

sidebar. A component usually has one or more files.

Content: Content is the actual news story, unlike metadata which is

information about the news story (such as when it was

written, what it is about, when it can be released, and so on).

End-users generally see content in print or online, but do not

see much, if any, of the metadata.

Element: A pair of tags and the text or nested elements between them in

an XML document, such as “<distributor>AP

Online</distributor>”.

File: A physical representation of a component, such as a JPEG file

for an image, or an XHTML file for a text story. Note that a

component may have more than one alternative file (such as a

photo in high and low resolutions, or a text story in XHTML

and NITF. Each file represents a different version of the same

information.

HTML: The Hypertext Markup Language, a W3C standard for marking

up the content of web pages. http://www.w3.org/MarkUp/.

IANA: Internet Assigned Numbers Authority is an organization that

oversees global IP address allocation, DNS root zone

management, and other Internet protocol assignments. It is

operated by ICANN (Internet Corporation for Assigned

Names and Numbers (see http://www.iana.org).

ISO 639: A list of standard, two-letter abbreviations for natural

languages, such as “en” for English or “ja” for Japanese.

http://www.loc.gov/standards/iso639-2/englangn.html

ISO 8601: An international standard for representing dates and times,

such as “2006-08-21T04:00:00-04:00” for August 21, 2006 at 4:00

am EDT. http://www.w3.org/TR/NOTE-datetime

http://www.w3.org/MarkUp/
http://www.loc.gov/standards/iso639-2/englangn.html
http://www.w3.org/TR/NOTE-datetime

NewsEdge Java API Guide

Page 144 of 152

IPTC: The International Press Telecommunications Council, the

standards body that maintains NITF and NewsML.

http://www.iptc.org/.

Log4J: A highly-configurable free Java logging library available from

the Apache Foundation. The Log4J library is required for

client applications, since the NewsEdge Java API depends on

it. The library is available from

http://logging.apache.org/log4j/

Metadata: Information about the news story, such as when it was

written, what it is about, when it can be released, and so on.

Content is the news story itself. End-users generally see

content in print or online, but do not see much, if any, of the

metadata.

Mixed content: XML text, some of which may be tagged using inline

elements. http://www.w3.org/TR/REC-xml/#sec-mixed-content

Namespace: A scheme for disambiguating XML names using URLs

mapped to prefixes, such as “xn:” for

“http://www.xmlnews.org/namespaces/meta#”. The

namespace functions similarly to a package in the Java or C++

programming languages. http://www.w3.org/TR/REC-xml-

names/

NewsML: An XML-based format maintained by the IPTC for encoding

metadata and packaging information about news stories.

http://www.newsml.org/

NITF: The News Industry Text Format, an XML-based format

maintained by the IPTC for encoding the content of news

stories. http://www.nitf.org/.

Package: A complete distribution of related components, such as a news

story with its accompanying photo and sidebar.

W3C: The World Wide Web Consortium, the main standards body for

the web, and maintainer of XML. http://www.w3.org/

http://www.iptc.org/
http://logging.apache.org/log4j/
http://www.w3.org/TR/REC-xml/#sec-mixed-content
http://www.xmlnews.org/namespaces/meta#%E2%80%9D
http://www.w3.org/TR/REC-xml-
http://www.w3.org/TR/REC-xml-
http://www.newsml.org/
http://www.nitf.org/
http://www.w3.org/

NewsEdge Java API Guide

Page 145 of 152

XML: The Extensible Markup Language, a standard for representing

structured, hierarchical information using plain text files.

http://www.w3.org/XML/

http://www.w3.org/XML/

NewsEdge Java API Guide

Page 146 of 152

Index

A

ACTIVE_PROFILE, 107

addObserver, 112

addQuipEventListener, 80

ADMIN_SERVICE, 47, 77

architecture, 139

available wires, 41

B

Base64 (class), 128

binary objects, 129

C

CACHE_EDGAR10K, 95

CACHE_NEWS, 95

CACHE_UPDN, 95

CACHE_WSOD, 95

cacheType

constants, 95

change

connection password, 23

search results, 29

changeProfile, 112

channel, 17

Channel (class), 76

client, 10 close,

53, 80

codeString, 37

component, 143

connect

port 443, 22

port 80, 18, 20, 22

proxy, 21

server, 19, 131

to server, 8

CONNECT, 82

connection

monitor, 18, 21, 24, 80

connection event, 25

constants cacheType,

95 getType, 82, 88

setShowChain, 122

status, 107

content, 16, 36, 42, 119, 120

count, 128

count (method), 29

currentHeadlines, 92

D

date

limit search results, 18, 30, 97

decode, 129

default port, 8, 47

deleteObserver, 112

deleteObservers, 112

deleteProfile, 112

detectProxy, 130

detectProxy (class), 130

determine

entitlements, 26

DISCONNECT, 82

doDeleteProfile, 107

doHistorySearch (method), 11

doReadHeadlines, 94, 98, 115

doReadProfileGroup, 109

doReadStory, 121

doReadStory (method), 16

doSetProfile, 106

doUserNewsInfoRequest, 124

dpi, 56

DUPLICATE_LOGIN, 82

E

element, 143

entitlements

discover, 26

examine

profiles, 35

NewsEdge Java API Guide

Page 147 of 152

ExtendedEnumeration interface, 128

F

file, 143

filter, 12

real-time news, 12, 134

filtering

real-time headlines, 35

firewall, 47

full text

retrieve, 16

full-text

retrieve, 136

fulltext search, 9

G

GARI JAR file, 7 gari.inap

package, 46

gari.inap.InapClient (object), 8

gari.inap.LoginData (object), 8

gari.medi.iptc package, 59

gari.media package, 50

gari.net package, 75

gari.net.detectProxy (class), 22

gari.net.ProxyData (class), 22

gari.news package, 85

gari.news.HistorySearch (object), 10

gari.news.NewsChannel (object), 10

gari.news.Profile (object), 12, 14

gari.news.ProfileHeadlines, 14

gari.news.ProfileManager (object), 14

gari.news.StoryAnswer (object), 16

gari.news.StoryRequest (object), 16

gari.util package, 127

geometry, 55

getAccountNumber, 80, 81

getActionAdvised, 67

getArticle, 17

getAudioCue, 74

getAudioDuration, 73

getAudioSamplingRate, 73

getAudioSamplingResolution, 73

getAudioType, 72

getBackfill, 106

getBaseWire, 42, 125

getByline, 64

getBylineTitle, 64

getCacheType, 94

getCaptionAbstract, 70

getCategory, 66

getCity, 69

getCodes, 12, 87 getContact,

64 getContentLocationCode,

63 getContentLocatonName,

63 getCopyrightNotice, 70

getCount, 94, 114

getCountryCode, 69

getCountryName, 70

getCredit, 70

getData, 59 getDate, 117

getDateCreated, 67

getDateRange, 97

getDescription, 126

getDigitalCreationDate, 68

getDigitialCreationTime, 68

getDisplayWire, 125

getEditorialUpdate, 65

getEditStatus, 65

getElements, 90, 108, 115

getExpirationDate, 66

getExpirationTime, 67

getField, 62

getFieldName, 62

getFixtureIdentifier, 66

getGetExactHitCount, 98

getHeadline, 70, 122

getHeadlineResIDOnly, 98, 105

getHeadlines, 110

getID, 118

getImageOrientation, 72

getImageType, 71

getImpactRating, 88

getIsNew, 106

NewsEdge Java API Guide

Page 148 of 152

getIsUpdate, 88

getKeywords, 63

getMaxProfiles, 108

getMessage, 82

getMetadataType, 101

getMimeType, 58

getName, 36, 58, 98, 105

getNProfiles, 123

getNumber, 36

getNWires, 123

getObjecPreviewFileFormatVersion, 74

getObjectAttribute, 62

getObjectCycle, 69

getObjectDataPreviewData, 74

getObjectName, 65

getObjectPreviewFileFormat, 74

getObjectType, 65

getOriginalProgram, 68

getOriginalTransmissionReference, 70

getPassword, 50

getPort, 76, 94 getProfile, 62,

112 getProfileStatus, 104

getProgramVersion, 69

getProvider, 117

getProviderService, 42, 125

getProvinceState, 69

getProxyData, 57, 80

getProxyHost, 22, 78, 130

getProxyPassword, 79

getProxyPort, 22, 78, 130

getProxyUsername, 78

getQueryItems, 94

getQuipClient, 76

getQuipEventListeners, 80

getRasterizedCaption, 71

getRecordVersion, 62

getReferenceDate, 64

getReferenceNumber, 64

getReferenceService, 63

getReleaseDate, 66

getReleaseTime, 66

getResolution, 59

getResourceId, 12

getResourceID, 86, 122

getResourceID() (method), 16

getReturnOK, 106

getServerAddress, 80

getService, 118

getShowAll, 105

getShowChainHeadOnly, 98

getSize, 58

getSource, 70

getSpecialInstructions, 67

getStylesheet, 121

getSubLocation, 69

getSummary, 86

getSupplementalCategory, 63

getSuppressHeadlineOnly, 100

getSuppressTemp, 100

getSymbols, 12, 87

getText, 12, 86, 119

getText() (method), 17

getTime, 117

getTimeCreated, 68

getTimeout, 53

getType, 81, 88

constants, 82, 88

getUrgency, 62

getUsername, 49

getVersion, 50

getWireInfo, 126

getWireList, 123

getWires, 100

getWriterEditor, 65

H

Headline (class), 85

Headline (object), 15

Headline class, 12

headline text, 19, 41

HeadlineAnswer, 90

HeadlineAnswer (class), 89

HeadlineAnswer (object), 15

HeadlineContext (class), 91

NewsEdge Java API Guide

Page 149 of 152

headlines

filter real-time, 35

historical headlines

search, 11, 15, 18, 27, 31, 96, 141

historical news, 27

search, 132

searching, 10

HISTORY_HIT, 88

HistoryCacheSearch, 93

HistoryCacheSearch (class), 93

HistorySearch, 32, 96

HistorySearch (class), 95

HTML, 121, 143

HTTP_SERVICE, 47, 77

HTTPS_SERVICE, 47, 77

I

IIM, 60

INACTIVE_PROFILE, 107

Inap layer, 140

inapclient (class), 46

Information Interchange Model, 60

IPTC, 144

IPTCConstants interface, 60

IPTCParseException, 74

IPTCProfile, 61

IPTCProfile (class), 61

isBackfill, 111

isConnected, 57, 79

isHot, 86

ISO 639, 143

ISO 8601, 143

isProxySet, 130

isProxySet (method), 22

isSubwire, 125

isUsingProxy, 80

isUsingProxyData, 57

J

JAPI, 49

Java SDK, 6, 7

java.lang.String split method, 37

L

library, 77

login, 47

Login (object), 24

LOGIN_TIMEOUT, 48

LoginData, 49

LoginData (class), 48

LoginData (object), 48

M

MAX_CONNECTIONS, 83

maxsize, 56

MediaCommConstants Interface, 50

MediaConnection, 52

MediaConnection (class), 52

MEDIAD_ASSOCIATED, 51

MEDIAD_CUSTOM_RES, 51

MEDIAD_HALFSIZE_RES, 51

MEDIAD_MIDSIZE_RES, 51

MEDIAD_ORIGINAL_RES, 51

MEDIAD_PREVIEW_RES, 51

MEDIAD_THUMBNAIL_RES, 50

MediaData (class), 58

MediaData (object), 54

MediaException, 59

messaging layer, 75

messaging patterns, 141

metadata, 36, 144

MetaHeadlineQuery, 32

MetaHeadlineQuery (class), 99

MetaQuery (class), 101

mixed content, 144

monitor

connection, 18, 21, 24, 80

MT_ALL_METADATA, 102

MT_CODES_ONLY, 102

MT_NONE, 102

MT_SYMBOLS_AND_CODES, 102

MT_SYMBOLS_AND_SPECIAL, 102

MT_SYMBOLS_ONLY, 102

NewsEdge Java API Guide

Page 150 of 152

N

namespace, 144

network proxy, 130

network stack, 140

news filter, 12

News layer, 140

NEWS_SERVICE, 47, 77

NewsChannel, 103

NewsChannel (class), 102

NewsML, 5, 144

nextHeadlines, 91

NITF, 5

NO_PROFILE, 107

NO_SIZE_CAP, 51

O

observer (argument), 13

observer class, 34

ORIGINAL_DPI, 52

P

package, 144

ParsingException, 127

password

change, 23

password-protected

proxy, 22

past articles, 27

pattern matching, 28, 96, 99

PING_FAILED, 82

PING_SUCCESS, 82

port, 47

443, 77

6963, 77

6973, 77

6983, 77

80, 77

port 443

connect, 22

port 80

connect, 18, 20, 22

PREDEFINED_GEOMETRY, 52

Prerequisites, 6

prevHeadlines, 91

Profile, 32, 104

Profile (class), 104

profile slot, 14

profile slots, 34

PROFILE_MATCH, 88

PROFILE_MISS, 89

ProfileGroup, 108

ProfileGroup (class), 108

ProfileHeadlines (class), 110

ProfileManager, 111

ProfileManager (class), 111

profiles

examine, 35

proxy, 47

connect through, 21

network, 130

password-protected, 22

proxy server, 8

ProxyData, 22, 78

ProxyData (class), 77

publication date/time, 19, 39

Q

QuanitfiedHeadlineAnswer (class),

114

QuantifiedHeadline (class), 113

QuantifiedHeadlineAnswer, 114

QuantifiedHeadlineRequest (class), 115

Quip layer, 140

QuipBuffer (class), 79

QuipBuffer receive, 76

QuipClient (class), 79

QuipClient addQuipEventListener, 75

QuipEvent class, 81

QuipEventListener interface, 75

QuipEventNotification, 75, 76

QuipException (class), 83

QUOTES_SERVICE, 47, 77

NewsEdge Java API Guide

Page 151 of 152

R

readFilenameResponse, 56

readImageResponse, 57

readIPTCResponse, 56

real-time headlines

filtering, 35

real-time news, 33

filter, 134

filter, 12

receive, 12

start feed, 18, 33, 142

receive

real-time news, 12

receive method, 11

RECONNECT, 82

RECONNECT_FAILED, 82

removeQuipEventListener, 80

request/response, 141

requestFilename, 54

requestHeadlinePage, 92

requestImage, 55

requestIPTC, 54

resetIndex, 128

resourceId, 17

ResourceID, 85, 116

ResourceID (class), 116

restartDrain, 112

retrieve

full text, 16, 136

RETRIEVE_CHAIN, 122

RETRIEVE_TAKE_ONLY, 122

S

search

fulltext, 9

historical headlines, 11, 15, 18, 27, 31,

96, 141

historical news, 132

historical news, 10

limit by wires, 18, 31, 36, 42, 96

results returned, 18, 29, 97

search pattern, 28

search results

limit by date, 18, 30, 97

server

connect to, 19, 131

connecting, 8, 19

serverAddress, 47

setBackfill, 106

setCacheType, 94

setCount, 94

setDateRange, 97

setGetExactHitCount, 97

setGetExactHitCount (method), 30

setHeadlineResIDOnly, 97, 105

setMaxHits, 97

setMetadataType, 101

setName, 98

setNewPassword, 50

setNumber, 13, 35, 105

setPassword, 50

setPort, 94

setProfileStatus, 104

setProxyHost, 78

setProxyPassword, 79

setProxyPort, 78

setProxyUsername, 78

setQueryItems, 94

setQueryText, 99

setReturnOK, 106

setShowAll, 105

setShowChain, 121

constants, 122

setShowChainHeadOnly, 98

setStylesheet, 121

setSuppressHeadlineOnly, 100

setSuppressTemp, 100

setTimeout, 53

setUsername, 49

setVersionString, 50

setWires, 100

setWires (method), 32

short changePassword, 48

short identifier, 19, 40

split method, 37

NewsEdge Java API Guide

Page 152 of 152

start

real-time news, 18, 33, 142

startDrain, 112

startFilter (method), 15

STARTUP_SERVICE, 47, 77

status

constants, 107

stock ticker, 28

stock ticker symbols, 37

stopDrain, 112

story provider, 19, 38

story service, 19, 38

story text

delivery method, 16

StoryAnswer, 119

StoryAnswer (class), 119

StoryRequest, 120

StoryRequest (class), 120

String encode, 129

stylesheet, 43

subject codes, 18, 37

symbol

stock ticker, 28

symbolString, 37

syndication, 141, 142

SYSTEM_ERROR, 83

T

TEXT, 121

TimeoutException (class), 84

toString, 118

U

update (method), 13

UserInfo class, 34

UserNewsInfo. See

UserNewsInfo (class), 123

UserNewsInfoRequest (class), 124

V

version, 48

vocabulary type, 37

W

wildcard, 12

WireInfo (class), 124

WireInfo (object), 42

WireInfo getBaseWire (method), 32

WireList (class), 126

wires

search, 18, 31, 36, 42, 96

X

XMLNews, 5

XMLNEWS, 121

TCP constants, 77

